Portal:Climate change

From Wikipedia, the free encyclopedia
(Redirected from P:CC)

The Climate Change Portal

Surface air temperature change over the past 50 years.[1]

In common usage, climate change describes global warming—the ongoing increase in global average temperature—and its effects on Earth's climate system. Climate change in a broader sense also includes previous long-term changes to Earth's climate. The current rise in global average temperature is primarily caused by humans burning fossil fuels since the Industrial Revolution. Fossil fuel use, deforestation, and some agricultural and industrial practices add to greenhouse gases. These gases absorb some of the heat that the Earth radiates after it warms from sunlight, warming the lower atmosphere. Carbon dioxide, the primary greenhouse gas driving global warming, has grown by about 50% and is at levels unseen for millions of years.

Climate change has an increasingly large impact on the environment. Deserts are expanding, while heat waves and wildfires are becoming more common. Amplified warming in the Arctic has contributed to thawing permafrost, retreat of glaciers and sea ice decline. Higher temperatures are also causing more intense storms, droughts, and other weather extremes. Rapid environmental change in mountains, coral reefs, and the Arctic is forcing many species to relocate or become extinct. Even if efforts to minimise future warming are successful, some effects will continue for centuries. These include ocean heating, ocean acidification and sea level rise.

Climate change threatens people with increased flooding, extreme heat, increased food and water scarcity, more disease, and economic loss. Human migration and conflict can also be a result. The World Health Organization (WHO) calls climate change the greatest threat to global health in the 21st century. Societies and ecosystems will experience more severe risks without action to limit warming. Adapting to climate change through efforts like flood control measures or drought-resistant crops partially reduces climate change risks, although some limits to adaptation have already been reached. Poorer communities are responsible for a small share of global emissions, yet have the least ability to adapt and are most vulnerable to climate change.

Many climate change impacts have been felt in recent years, with 2023 the warmest on record at +1.48 °C (2.66 °F) since regular tracking began in 1850. Additional warming will increase these impacts and can trigger tipping points, such as melting all of the Greenland ice sheet. Under the 2015 Paris Agreement, nations collectively agreed to keep warming "well under 2 °C". However, with pledges made under the Agreement, global warming would still reach about 2.7 °C (4.9 °F) by the end of the century. Limiting warming to 1.5 °C will require halving emissions by 2030 and achieving net-zero emissions by 2050.

Fossil fuel use can be phased out by conserving energy and switching to energy sources that do not produce significant carbon pollution. These energy sources include wind, solar, hydro, and nuclear power. Cleanly generated electricity can replace fossil fuels for powering transportation, heating buildings, and running industrial processes. Carbon can also be removed from the atmosphere, for instance by increasing forest cover and farming with methods that capture carbon in soil. (Full article...)

An early (2018) warming stripes graphic published by their originator, climatologist Ed Hawkins. The progression from blue (cooler) to red (warmer) stripes portrays annual increases of global average temperature since 1850 (left side of graphic) until the date of the graphic (right side).

Warming stripes (sometimes referred to as climate stripes, climate timelines or stripe graphics) are data visualization graphics that use a series of coloured stripes chronologically ordered to visually portray long-term temperature trends. Warming stripes reflect a "minimalist" style, conceived to use colour alone to avoid technical distractions to intuitively convey global warming trends to non-scientists.

The initial concept of visualizing historical temperature data has been extended to involve animation, to visualize sea level rise and predictive climate data, and to visually juxtapose temperature trends with other data such as atmospheric CO2 concentration, global glacier retreat, precipitation, progression of ocean depths, aviation emission's percentage contribution to global warming, biodiversity loss, and soil moisture deviations. In less technical contexts, the graphics have been embraced by climate activists, used as cover images of books and magazines, used in fashion design, projected onto natural landmarks, and used on athletic team uniforms, music festival stages, and public infrastructure. (Full article...)
List of selected articles

Selected picture – show another

Global vegetation – Food, fuel and shelter. Vegetation is one of the most important requirements for human populations around the world. Satellites monitor how "green" different parts of the planet are and how that greenness changes over time. These observations help scientists understand the influence of natural cycles, such as drought and pest outbreaks, on vegetation, as well as human influences, such as land-clearing and global warming.

WikiProjects

In the news

Selected biography – show another

Jean-Baptiste Joseph Fourier (/ˈfʊri, -iər/; French: [fuʁje]; 21 March 1768 – 16 May 1830) was a French mathematician and physicist born in Auxerre and best known for initiating the investigation of Fourier series, which eventually developed into Fourier analysis and harmonic analysis, and their applications to problems of heat transfer and vibrations. The Fourier transform and Fourier's law of conduction are also named in his honour. Fourier is also generally credited with the discovery of the greenhouse effect. (Full article...)

General images

The following are images from various climate-related articles on Wikipedia.

Did you know – show another

... Arctic haze contributes to global warming, raising temperatures by up to 5.4°F (3°C) during the arctic winter? A major distinguishing factor of Arctic haze is the ability of its chemical ingredients to persist in the atmosphere for an extended period of time compared to other pollutants.
Other "Did you know" facts... Read more...

Related portals

Selected panorama – show another

The effective rate of change in glacier thickness, also known as the glaciological mass balance, is a measure of the average change in a glacier's thickness after correcting for changes in density associated with the compaction of snow and conversion to ice. The map shows the average annual rate of thinning since 1970 for the 173 glaciers that have been measured at least 5 times between 1970 and 2004. Larger changes are plotted as larger circles and towards the back.

All survey regions except Scandinavia show a net thinning. This widespread glacier retreat is generally regarded as a sign of global warming.

During this period, 83% of surveyed glaciers showed thinning with an average loss across all glaciers of 0.31 m/yr. The most rapidly growing glacier in the sample is Engabreen glacier in Norway with a thickening of 0.64 m/yr. The most rapidly shrinking was Ivory glacier in New Zealand which was thinning at 2.4 m/yr. Ivory glacier had totally disintegrated by circa 1988. [1]

Topics


Categories

Web resources


Things to do

Wikimedia

References

  1. ^ "GISS Surface Temperature Analysis (v4)". NASA. Retrieved 12 January 2024.
  2. ^ Bhargav, Vishal (2021-10-11). "Climate Change Is Making India's Monsoon More Erratic". www.indiaspend.com. Retrieved 2021-10-11.
  3. ^ Tiwari, Dr Pushp Raj; Conversation, The. "Nobel prize: Why climate modellers deserved the physics award – they've been proved right again and again". phys.org. Retrieved 2021-10-11.
Discover Wikipedia using portals

Purge server cache