Third Quiz for CSI35

Nikos Apostolakis

March 11, 2015

Directions: This quiz is due Monday March 16, at 4:00 PM.

1. Let $A = \{0, 1\}$.

- (a) How many (binary) relations are there on A? List all of them.
- (b) Which of the relations you listed in par (a) are reflexive? Which are symmetric? Which are antisymmetric? Which are transitive?
- 2. The relation R on the set of real numbers \mathbb{R} is defined as follows:

$$R = \{(x, y) \in \mathbb{R}^2 : x^4 = y^4\}$$

Prove that:

- (a) R is reflexive.
- (b) R is symmetric.
- (c) R is transitive.
- 3. Consider the following relation on the set of natural numbers \mathbb{N} :

$$R = \{(m, n) : m \text{ divides } n\}$$

- (a) R is reflexive.
- (b) R is antisymmetric.
- (c) R is transitive.
- 4. Let R_1 and R_2 be the relations on $\{1, 2, 3\}$ represented the digraphs G_1 and G_2 shown in Figure 1.
 - (a) Find the matrices M_1 and M_2 representing the relations R_1 and R_2 .
 - (b) Write down the relations R_1 and R_2 as sets of ordered pairs.
 - (c) Find the matrices corresponding to the relations $R_1 \circ R_2$ and $R_2 \circ R_1$.

Figure 1: The digraphs of Question 4

- (d) Write the relations $R_1 \circ R_2$ and $R_2 \circ R_1$ as sets of ordered pairs.
- (e) Draw the digraphs representing the relations $R_1 \circ R_2$ and $R_2 \circ R_1$.
- 5. Consider the following zero-one matrix:

$$A = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix}$$

Prove that $A^n = A$ for all natural numbers $n \ge 1$, where the power is with respect to the boolean product.

6. Extra Credit After Alice and Bob finished playing a game they decided to study for the Discrete Mathematics exam that was coming up. After a while they had the following conversation:

A: I was looking at the definition of an equivalence relation and it seems redundant.

 $\mathbf{B}: \operatorname{How}\,\operatorname{so?}$

A: Well, it says that an equivalence relation is a relation that is reflexive, symmetric and transitive. Now that's redundant, because I can prove that if a relation is symmetric and transitive then it is reflexive as well. So to be economical we should define an equivalence relation to be a relation that is symmetric and transitive. No need to check for reflexivity, really.

B: Hm, this sound fishy to me. Somebody would've noticed before. Let me see your proof.

A: It's very simple really: Let R be a symmetric and transitive relation on a set A. To prove that it is reflexive I need to prove that for all $x \in A$ we have $(x, x) \in R$. So let $x \in R$, chose any $y \in A$ such that $(x, y) \in R$. Then since R is symmetric we have $(y, x) \in R$ also. So we have $(x, y) \in R$ and $(y, x) \in R$, so since R is transitive we conclude that $(x, x) \in R$. So, R is reflexive.

Bob is thoughtful for a while.

 ${\bf B}:$ Hm, your proof seems valid. . . Still, I find it hard to believe that nobody had noticed this before. Let me think some more.

Bob thinks some more.

B: Ok, your proof must be wrong because I can produce a counter example. Remember the matrix in exercise 5:

$$\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix}$$

This matrix is symmetric and transitive, but not reflexive.

A: (after some thought) Yep, you're right. Still though I can't figure out where is the gap in my proof.

 $\mathbf{B}:$ Me neither \ldots

- (a) Prove that Bob's counter-example really works.
- (b) Can you find the fault in Alice's proof?