Third Quiz for CSI35

Nikos Apostolakis

March 11, 2015

Directions: This quiz is due Monday March 16, at 4:00 PM.

1. Let $A=\{0,1\}$.
(a) How many (binary) relations are there on A ? List all of them.
(b) Which of the relations you listed in par (a) are reflexive? Which are symmetric? Which are antisymmetric? Which are transitive?
2. The relation R on the set of real numbers \mathbb{R} is defined as follows:

$$
R=\left\{(x, y) \in \mathbb{R}^{2}: x^{4}=y^{4}\right\}
$$

Prove that:
(a) R is reflexive.
(b) R is symmetric.
(c) R is transitive.
3. Consider the following relation on the set of natural numbers \mathbb{N} :

$$
R=\{(m, n): m \text { divides } n\}
$$

(a) R is reflexive.
(b) R is antisymmetric.
(c) R is transitive.
4. Let R_{1} and R_{2} be the relations on $\{1,2,3\}$ represented the digraphs G_{1} and G_{2} shown in Figure 1.
(a) Find the matrices M_{1} and M_{2} representing the relations R_{1} and R_{2}.
(b) Write down the relations R_{1} and R_{2} as sets of ordered pairs.
(c) Find the matrices corresponding to the relations $R_{1} \circ R_{2}$ and $R_{2} \circ R_{1}$.

G_{1}

Figure 1: The digraphs of Question 4
(d) Write the relations $R_{1} \circ R_{2}$ and $R_{2} \circ R_{1}$ as sets of ordered pairs.
(e) Draw the digraphs representing the relations $R_{1} \circ R_{2}$ and $R_{2} \circ R_{1}$.
5. Consider the following zero-one matrix:

$$
A=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right)
$$

Prove that $A^{n}=A$ for all natural numbers $n \geq 1$, where the power is with respect to the boolean product.
6. Extra Credit After Alice and Bob finished playing a game they decided to study for the Discrete Mathematics exam that was coming up. After a while they had the following conversation:
A: I was looking at the definition of an equivalence relation and it seems redundant.
B: How so?
A: Well, it says that an equivalence relation is a relation that is reflexive, symmetric and transitive. Now that's redundant, because I can prove that if a relation is symmetric and transitive then it is reflexive as well. So to be economical we should define an equivalence relation to be a relation that is symmetric and transitive. No need to check for reflexivity, really.
B: Hm, this sound fishy to me. Somebody would've noticed before. Let me see your proof.
A: It's very simple really: Let R be a symmetric and transitive relation on a set A. To prove that it is reflexive I need to prove that for all $x \in A$ we have $(x, x) \in R$. So let $x \in R$, chose any $y \in A$ such that $(x, y) \in R$. Then since R is symmetric we have $(y, x) \in R$ also. So we have $(x, y) \in R$ and $(y, x) \in R$, so since R is transitive we conclude that $(x, x) \in R$. So, R is reflexive.
Bob is thoughtful for a while.

B: Hm, your proof seems valid... Still, I find it hard to believe that nobody had noticed this before. Let me think some more.

Bob thinks some more.
B: Ok, your proof must be wrong because I can produce a counter example. Remember the matrix in exercise 5:

$$
\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right)
$$

This matrix is symmetric and transitive, but not reflexive.
A: (after some thought) Yep, you're right. Still though I can't figure out where is the gap in my proof.

B: Me neither ...
(a) Prove that Bob's counter-example really works.
(b) Can you find the fault in Alice's proof?

