Midterm exam

Nikos Apostolakis

March 19, 2015

Directions: Please write your answers in separate papers and staple all the papers together. This exam is due Monday, March 23, at 4:00 PM.

1. Prove by induction that for all natural numbers $n \ge 1$ the following identity holds:

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

- 2. In the Land of Oz, they have only 3-cent and 8-cent stamps. Prove that you can use combinations of these stamps to pay for any letter that costs 14 or more cents.
- 3. Recall the recursive definition of the Fibonacci numbers f_n :

$$f_n = \begin{cases} 0 & \text{if } n = 0\\ 1 & \text{if } n = 1\\ f_{n-1} + f_{n-2} & \text{if } n \ge 2 \end{cases}$$

Prove that for all natural numbers $n \ge 1$ we have:

$$f_{n+3} = 3f_n + 2f_{n-1}$$

- 4. The Fina Bocci company breeds worms for fishing. After each worm is two weeks old they cut off its tail which becomes a new worm. The tail grows back in a week, so once a worm becomes two weeks old it produces a new worm every week. Assuming that no worm ever dies and that the company starts with one newly "born" worm, find a recursive formula for the the number of worms after n weeks.
- 5. Consider the alphabet $\Sigma = \{0, 1, 2\}$. A *palindrome* is a string $s \in \Sigma^*$ with the property that it reads the same when read backwards. For example "210012" is a palindrome. Let Π be the set of all palindromes in Σ^* .
 - (a) Give a recursive definition of Π .
 - (b) Find a formula that gives the number of elements of Π of length n, for $n \in \mathbb{N}$.
 - (c) Extra Credit: Prove the formula you gave in part (b).

6. For a rooted tree T let v(T) and e(T) denote the number of vertices and edges of T respectively. Use structural induction to prove that

$$v(T) - e(T) = 1$$

7. Consider the relation R represented by the matrix

$$M_R = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

- (a) Is R reflexive?
- (b) Is R symmetric?
- (c) Is R transitive?
- (d) Draw the digraph representing R.
- 8. Consider the relations R, and S on the set $\{1, 2, 3, 4\}$ represented by the digraphs:

- (a) Find the matrices M_S and M_R .
- (b) Use these matrices to compute the compositions $R \circ S$ and $S \circ R$.
- (c) Draw the digraphs that represent $R \circ S$ and $S \circ R$.
- (d) Write the relations $R \circ S$ and $S \circ R$ as sets of ordered pairs.
- 9. Let \mathbb{R}^+ be the set of positive real numbers. Define a relation R on \mathbb{R}^+ as follows:

$$R = \{(x, y) \in \mathbb{R}^+ \times \mathbb{R}^+ : \frac{y}{x} \in \mathbb{Q}\}$$

where \mathbb{Q} is the set of all rational numbers.

- (a) Prove that R is an equivalence relation.
- (b) Find [1] and $\sqrt{2}$, i.e. the equivalence class of 1 and the equivalence class of $\sqrt{2}$.
- 10. How many equivalence relations are there on the set $\{1, 2, 3, 4, 5, 6\}$?

Hint. It's easier to count how many partitions of the set $\{1, 2, 3, 4, 5, 6\}$ are there.

11. **Extra Credit:** Consider a $2 \times n$ checkerboard, and let t_n be the number of ways that we can completely tile the board using dominoes. For example as we see in Figure 1 we have $t_1 = 1$, $t_2 = 2$, and $t_3 = 3$. Find a recursive formula for t_n and prove that it is correct.

Figure 1: Tilling an $2 \times n$ board with dominoes for n = 1, 2, 3