1. Evaluate: $\quad-7+5(6-8)$

Solution.

$$
\begin{aligned}
-7+5(6-8) & =-7+5(-2) \\
& =-7-10 \\
& =-17
\end{aligned}
$$

2. Evaluate: $\sqrt{c^{2}-a^{2}}$, when $c=-10$ and $a=6$.

## Solution.

$$
\begin{aligned}
\sqrt{c^{2}-a^{2}} & =\sqrt{(-10)^{2}-(6)^{2}} \\
& =\sqrt{100-36} \\
& =\sqrt{64} \\
& =8
\end{aligned}
$$

3. Let $f(x)=x^{2}-5 x+4$. Find $f(-3)$.

Solution.

$$
\begin{aligned}
f(-3) & =(-3)^{2}-5(-3)+4 \\
& =9-5(-3)+4 \\
& =9+15+4 \\
& =28
\end{aligned}
$$

4. Translate into algebra and solve:

## 10 is 10 more than 5 times a number.

Solution. Let $x$ be the unknown number. Then 10 more than 5 times the number is $5 x+10$. So the given phrase translates to the equation:

$$
10=5 x+10
$$

Now we solve the equation:

$$
\begin{aligned}
10=5 x+10 & \Longleftrightarrow 0=5 x \\
& \Longleftrightarrow 0=x
\end{aligned}
$$

Thus the unknown number is 0 .
5. Solve the equation: $\quad 2(x+5)=3(x+8)-6$

Solution. We have:

$$
\begin{aligned}
2(x+5)=3(x+8)-6 & \Longleftrightarrow 2 x+10=3 x+24-6 \\
& \Longleftrightarrow 2 x+10=3 x+18 \\
& \Longleftrightarrow 10-18=3 x-2 x \\
& \Longleftrightarrow-8=x
\end{aligned}
$$

6. Solve for $x: \quad 3 y=5 x+4 z$

Solution. We have

$$
\begin{aligned}
3 y=5 x+4 z & \Longleftrightarrow 3 y-4 z=5 x \\
& \Longleftrightarrow \frac{3 y-4 z}{5}=x \\
& \Longleftrightarrow x=\frac{3 y-4 z}{5}
\end{aligned}
$$

7. Evaluate. Give the answer in Scientific Notation.

$$
\left(7.3 \times 10^{-3}\right) \times\left(5.0 \times 10^{7}\right)
$$

Solution.

$$
\begin{aligned}
\left(7.3 \times 10^{-3}\right) \times\left(5.0 \times 10^{7}\right) & =(7.3 \times 5.0) \times\left(10^{-3} \times 10^{7}\right) \\
& =36.5 \times 10^{4} \\
& =3.65 \times 10^{5}
\end{aligned}
$$

8. Evaluate. Give the answer in Scientific Notation.

$$
\frac{2.3 \times 10^{5}}{5.0 \times 10^{-9}}
$$

Solution.

$$
\begin{aligned}
\frac{2.3 \times 10^{5}}{5.0 \times 10^{-9}} & =\frac{2.3}{5.0} \times \frac{10^{5}}{10^{-9}} \\
& =0.46 \times 10^{14} \\
& =4.6 \times 10^{13}
\end{aligned}
$$

9. Find the point of intersection of the lines with equations $y=3 x-1$ and $5 x-2 y=3$.

Solution. We need to solve the system of the two equations. Substituting the expression for $y$ from the first equation into the second we have:

$$
\begin{aligned}
5 x-2(3 x-1)=3 & \Longleftrightarrow 5 x-6 x+2=3 \\
& \Longleftrightarrow-x=1 \\
& \Longleftrightarrow x=-1
\end{aligned}
$$

We now substitute the value of $x$ in the first equation to find the value of $y$ :

$$
\begin{aligned}
y=3(-1)-1 & \Longleftrightarrow y=-3-1 \\
& \Longleftrightarrow y=-4
\end{aligned}
$$

So the two lines intersect at the point with coordinates $(-1,-4)$.
10. Find the slope and the two intercepts of the line with equation $-7 x+3 y=-42$.

Solution. We put the equation in slope-intercept form by solving for $y$ :

$$
\begin{aligned}
-7 x+3 y=-42 & \Longleftrightarrow 3 y=7 x-42 \\
& \Longleftrightarrow y=\frac{7 x-42}{3} \\
& \Longleftrightarrow y=\frac{7}{3} x-14
\end{aligned}
$$

So the slope of the line is $\frac{7}{3}$ and its $y$-intercept is at $(0,-14)$.
To find the $x$-intercept we substitute $y=0$ in the equation and solve for $x$ :

$$
\begin{aligned}
-7 x+3 \cdot 0=-42 & \Longleftrightarrow-7 x=-42 \\
& \Longleftrightarrow x=6
\end{aligned}
$$

So the $x$ intercept is at $(6,0)$.
11. Sketch the graph of $4 x+3 y=12$. Show the $x$ and $y$ intercepts.

Solution. We need two points to graph the line. Since we are also asked for the two intercepts we start by finding those.
The $x$-intercept is the point of the line for which $y=0$.

$$
\begin{aligned}
4 x+3 \cdot 0=12 & \Longleftrightarrow 4 x=12 \\
& \Longleftrightarrow x=3
\end{aligned}
$$

So the $x$-intercept is at $(3,0)$.

The $y$-intercept is the point of the line for which $x=0$.

$$
\begin{aligned}
4 \cdot 0+3 y=12 & \Longleftrightarrow 3 y=12 \\
& \Longleftrightarrow y=4
\end{aligned}
$$

So the $y$-intercept is at $(0,4)$.
So we have the following graph:

12. Solve the following system: $\quad\left\{\begin{array}{l}3 x-5 y=-1 \\ 4 x+2 y=16\end{array}\right.$

Solution. We begin by eliminating $x$ : we multiply the first equation with 4 and the second with -3 .

$$
\left\{\begin{aligned}
12 x-20 y & =-4 \\
-12 x-6 y & =-48
\end{aligned}\right.
$$

Adding the two equations gives:

$$
-26 y=-52 \Longleftrightarrow y=2
$$

Substituting the value of $y$ in the first equation gives:

$$
3 x-5 \cdot 2=-1 \Longleftrightarrow 3 x=9 \Longleftrightarrow x=3
$$

So the solution is $(3,2)$.
13. Solve the following system: $\quad\left\{\begin{array}{l}2 x+3 y=-3 \\ 4 x+6 y=-6\end{array}\right.$

Solution. We multiply the first equation with 4 and the second with -2 . We get:

$$
\left\{\begin{aligned}
8 x+12 y & =-12 \\
-8 x-12 y & =12
\end{aligned}\right.
$$

Then we add up the two equations and get

$$
0=0
$$

So the system is equivalent to one of its equations. So all solutions to $2 x+3 y=-3$ are solutions to the system.
14. Simplify. Give your answer using positive exponents only. $\left(4 x^{-4} y^{3} z^{5}\right)^{2}\left(-2 x^{-2} y^{4} z^{-2}\right)^{-3}$ Solution.

$$
\begin{aligned}
\left(4 x^{-4} y^{3} z^{5}\right)^{2}\left(-2 x^{-2} y^{4} z^{-2}\right)^{-3} & =4^{2} x^{-8} y^{6} z^{10}(-2)^{-3} x^{6} y^{-12} z^{6} \\
& =16 x^{-2} y^{-6} z^{16}\left(-\frac{1}{2^{3}}\right) \\
& =-\frac{2 z^{16}}{x^{2} y^{6}}
\end{aligned}
$$

15. Simplify. Give your answer using positive exponents only.

$$
\frac{x^{2}\left(y^{2} w^{-2}\right)^{2}}{x^{-3} y^{3} w^{-6}}
$$

Solution.

$$
\begin{aligned}
\frac{x^{2}\left(y^{2} w^{-2}\right)^{2}}{x^{-3} y^{3} w^{-6}} & =\frac{x^{2} y^{4} w^{-4}}{x^{-3} y^{3} w^{-6}} \\
& =x^{2-(-3)} y^{4-3} w^{-4-(-6)} \\
& =x^{5} y w^{2}
\end{aligned}
$$

16. Simplify: $\left(-x^{2}+4 x-7\right)-\left(8 x^{2}+3 x-2\right)$

## Solution.

$$
\begin{aligned}
\left(-x^{2}+4 x-7\right)-\left(8 x^{2}+3 x-2\right) & =-x^{2}+4 x-7-8 x^{2}-3 x+2 \\
& =-9 x^{2}+x-5
\end{aligned}
$$

17. Expand and simplify: $(2 x-5)\left(3 x^{2}-5 x+7\right)$

## Solution.

$$
\begin{aligned}
(2 x-5)\left(3 x^{2}-5 x+7\right) & =6 x^{3}-10 x^{2}+14 x-15 x^{2}+25 x-35 \\
& =6 x^{3}-25 x^{2}+39 x-35
\end{aligned}
$$

18. Expand and simplify: $(a+2)^{3}$

Solution.

$$
\begin{aligned}
(a+2)^{3} & =(a+2)(a+2)^{2} \\
& =(a+2)\left(a^{2}+4 a+4\right) \\
& =a^{3}+4 a^{2}+4 a+2 a^{2}+8 a+8 \\
& =a^{3}+6 a^{2}+12 a+8
\end{aligned}
$$

19. Simplify: $\frac{10 a^{5} b^{3}-4 a^{3} b^{2}+6 a^{4} b^{6}+8 a b^{2}}{2 a b^{2}}$

Solution. We have:

$$
\begin{aligned}
\frac{10 a^{5} b^{3}-4 a^{3} b^{2}+6 a^{4} b^{6}+8 a b^{2}}{2 a b^{2}} & =\frac{10 a^{5} b^{3}}{2 a b^{2}}-\frac{4 a^{3} b^{2}}{2 a b^{2}}+\frac{6 a^{4} b^{6}}{2 a b^{2}}+\frac{8 a b^{2}}{2 a b^{2}} \\
& =5 a^{4} b-2 a^{2}+3 a^{3} b^{4}+4
\end{aligned}
$$

20. Simplify: $\frac{(2 x-3)^{2}+24 x}{(2 x+3)^{2}}$

Solution.

$$
\begin{aligned}
\frac{(2 x-3)^{2}+24 x}{(2 x+3)^{2}} & =\frac{4 x^{2}-12 x+9+24 x}{4 x^{2}+12 x+9} \\
& =\frac{4 x^{2}+12 x+9}{4 x^{2}+12 x+9} \\
& =1
\end{aligned}
$$

Page 6

