Practice Exam The answers

1. (10 points) Given the following functions f and g described by the graphs below:

- (a) Answer the following questions using interval notation:
 - i. Find the domain of f. [-3, 1]
 - ii. Find the range of f. [-2, 2]
 - iii. Find the domain of g. [-2,3]
 - iv. Find the range of g. (-3,3]
 - v. Find an interval on which f is one-to-one. [-2,0] or (0,3]
- (b) Evaluate the following if they exist:
 - i. g(0) 1 ii. (f+g)(-2) -2 iii. $\left(\frac{f}{g}\right)(-1)$ Undefined iv. $(f \circ g)(1)$ 0 v. $(g \circ g)(1)$ 0
- 2. (5 points) Let $f(x) = x^2 2x + 5$ and g(x) = 3x 2. Find $f \circ g$. $(f \circ g)(x) = 9x^2 18x + 13$
- 3. (10 points) Let f(x) = 4x 7 and $g(x) = \frac{x+7}{4}$. Show that f and g are inverses. Show that f(g(x)) = x and g(f(x)) = x
- 4. (5 points) Let $f(x) = x^2 7x 6$.
 - (a) Find the vertex of the graph of y = f(x). $\left(\frac{7}{2}, -\frac{73}{4}\right)$
 - (b) Find the *x*-intercepts of the graph of y = f(x). $\left(\frac{7+\sqrt{73}}{2}, 0\right), \left(\frac{7-\sqrt{73}}{2}, 0\right)$
 - (c) Find the domain of f. $(-\infty, \infty)$
 - (d) Find the range of f. $\left[-\frac{73}{4},\infty\right)$
- 5. (10 points) Let $f(x) = 4x^3 4x^2 7x 2$.
 - (a) List all possible rational roots of f, according to the Rational Zeros Theorem. $\left\{\pm 1, \pm 2, \pm \frac{1}{2}, \pm \frac{1}{4}\right\}$
 - (b) Factor f(x) completely. $(x-2)(2x+1)^2$
 - (c) Find the *x*-intercepts of the graph of y = f(x). (2,0), $\left(-\frac{1}{2},0\right)$
 - (d) Sketch a graph of y = f(x).

6. (10 points) Solve the inequality:
$$\frac{(x+2)(x-1)}{x^2(x-3)} \le 0.$$
 $(-\infty, 2] \cup [1, 3)$

7. (10 points) Let $g(x) = \frac{x}{(x+3)(x-2)}$.

- (a) Find the vertical asymptote(s) of the graph of y = g(x). x = -3 and x = 2
- (b) Find the horizontal asymptote of the graph of y = g(x). y = 0
- (c) Find the *x*-intercept(s) of the graph of y = g(x). (0,0)
- (d) Sketch a graph of y = g(x).

- 8. (15 points) Evaluate the following expressions. Give exact answers whenever possible.
 - (a) $\log_5(\frac{1}{25})$ -2
 - (b) $\log_b(x^2y^3)$ given that $\log_b x = 15$ and $\log_b y = 4$ 42
 - (c) $\log_3(17)$ (rounded to the nearest hundredth). 2.58
 - (d) $\sin^{-1}(\sin(\pi/6))$. $\frac{\pi}{6}$

- (e) Find θ if $\sin \theta = -0.5$ and $\pi < \theta < \frac{3\pi}{2} \frac{7\pi}{6}$
- (f) The remainder when dividing the polynomial $x^{201} + 43$ by x + 1. 42
- (g) Find $\sin(x+y)$ given that $\sin x = 1/3$, $\sin y = 3/5$, and $0 < x, y < \frac{\pi}{2} = \frac{4+6\sqrt{2}}{15}$
- 9. (10 points) Let $g(x) = 2^{x+1}$.
 - (a) Find $g^{-1}(x)$. $g^{-1}(x) = \log_2 x 1$
 - (b) Sketch a graph of y = g(x) and $y = g^{-1}(x)$ on the same coordinate axes.

- (c) Discuss the relationship between the two graphs in part (b). The two graphs are symmetrical about the line y = x.
- 10. (10 points) Let $f(x) = -2\cos(4x \pi)$.
 - (a) Find the period of the graph of y = f(x). $\frac{\pi}{2}$
 - (b) Find the amplitude of the graph of y = f(x). 2
 - (c) Find the phase shift of the graph of y = f(x).
 - (d) Sketch two complete cycles of y = f(x).

- 11. (10 points) Verify that for all $x \cos x + \tan x \sin x = \sec x$. Do the algebra.
- 12. (10 points) Solve the following equations:
 - (a) $\log_3(x+6) + \log_3(x) = 3$. x = 3, x = -9 is extraneous.
 - (b) $4\cos^2 x 1 = 0$, where x is in the interval $[0, 2\pi)$. $x = \frac{\pi}{3}$, $x = \frac{2\pi}{3}$, $x = \frac{4\pi}{3}$, $x = \frac{5\pi}{3}$