Practice Exam

The answers

1. (10 points) Given the following functions f and g described by the graphs below:

(a) Answer the the following questions using interval notation:
i. Find the domain of f. $[-3,1]$
ii. Find the range of f. $[-2,2]$
iii. Find the domain of g. $[-2,3]$
iv. Find the range of g. $\quad(-3,3]$
v. Find an interval on which f is one-to-one. $[-2,0]$ or $(0,3]$
(b) Evaluate the following if they exist:
i. $g(0) \quad 1$
ii. $(f+g)(-2) \quad-2$
iii. $\left(\frac{f}{g}\right)(-1) \quad$ Undefined
iv. $(f \circ g)(1) \quad 0$
v. $(g \circ g)(1) \quad 0$
2. (5 points) Let $f(x)=x^{2}-2 x+5$ and $g(x)=3 x-2$. Find $f \circ g . \quad(f \circ g)(x)=9 x^{2}-18 x+13$
3. (10 points) Let $f(x)=4 x-7$ and $g(x)=\frac{x+7}{4}$. Show that f and g are inverses.

Show that $f(g(x))=x$ and $g(f(x))=x$
4. (5 points) Let $f(x)=x^{2}-7 x-6$.
(a) Find the vertex of the graph of $y=f(x) . \quad\left(\frac{7}{2},-\frac{73}{4}\right)$
(b) Find the x-intercepts of the graph of $y=f(x) . \quad\left(\frac{7+\sqrt{73}}{2}, 0\right), \quad\left(\frac{7-\sqrt{73}}{2}, 0\right)$
(c) Find the domain of $f . \quad(-\infty, \infty)$
(d) Find the range of $f . \quad\left[-\frac{73}{4}, \infty\right)$
5. (10 points) Let $f(x)=4 x^{3}-4 x^{2}-7 x-2$.
(a) List all possible rational roots of f, according to the Rational Zeros Theorem. $\quad\left\{ \pm 1, \pm 2, \pm \frac{1}{2}, \pm \frac{1}{4}\right\}$
(b) Factor $f(x)$ completely. $(x-2)(2 x+1)^{2}$
(c) Find the x-intercepts of the graph of $y=f(x) . \quad(2,0), \quad\left(-\frac{1}{2}, 0\right)$
(d) Sketch a graph of $y=f(x)$.

6. (10 points) Solve the inequality: $\frac{(x+2)(x-1)}{x^{2}(x-3)} \leq 0 . \quad(-\infty, 2] \cup[1,3)$
7. (10 points) Let $g(x)=\frac{x}{(x+3)(x-2)}$.
(a) Find the vertical asymptote(s) of the graph of $y=g(x) . \quad x=-3$ and $\quad x=2$
(b) Find the horizontal asymptote of the graph of $y=g(x) . \quad y=0$
(c) Find the x-intercept(s) of the graph of $y=g(x) . \quad(0,0)$
(d) Sketch a graph of $y=g(x)$.

8. (15 points) Evaluate the following expressions. Give exact answers whenever possible.
(a) $\log _{5}\left(\frac{1}{25}\right) \quad-2$
(b) $\log _{b}\left(x^{2} y^{3}\right)$ given that $\log _{b} x=15$ and $\log _{b} y=4 \quad 42$
(c) $\log _{3}(17)$ (rounded to the nearest hundredth). 2.58
(d) $\sin ^{-1}(\sin (\pi / 6)) \cdot \frac{\pi}{6}$
(e) Find θ if $\sin \theta=-0.5$ and $\pi<\theta<\frac{3 \pi}{2} \quad \frac{7 \pi}{6}$
(f) The remainder when dividing the polynomial $x^{201}+43$ by $x+1 . \quad 42$
(g) Find $\sin (x+y)$ given that $\sin x=1 / 3, \sin y=3 / 5$, and $0<x, y<\frac{\pi}{2} \quad \frac{4+6 \sqrt{2}}{15}$
9. (10 points) Let $g(x)=2^{x+1}$.
(a) Find $g^{-1}(x) . \quad g^{-1}(x)=\log _{2} x-1$
(b) Sketch a graph of $y=g(x)$ and $y=g^{-1}(x)$ on the same coordinate axes.

(c) Discuss the relationship between the two graphs in part (b). The two graphs are symmetricall about the line $y=x$.
10. (10 points) Let $f(x)=-2 \cos (4 x-\pi)$.
(a) Find the period of the graph of $y=f(x)$. $\frac{\pi}{2}$
(b) Find the amplitude of the graph of $y=f(x) . \quad 2$
(c) Find the phase shift of the graph of $y=f(x)$. $\quad \frac{\pi}{4}$
(d) Sketch two complete cycles of $y=f(x)$.

11. (10 points) Verify that for all $x \cos x+\tan x \sin x=\sec x$.

Do the algebra.
12. (10 points) Solve the following equations:
(a) $\log _{3}(x+6)+\log _{3}(x)=3 . \quad x=3, x=-9$ is extraneous.
(b) $4 \cos ^{2} x-1=0$, where x is in the interval $[0,2 \pi) . \quad x=\frac{\pi}{3}, \quad x=\frac{2 \pi}{3}, \quad x=\frac{4 \pi}{3}, \quad x=\frac{5 \pi}{3}$

