Ninth set of Homework

Nikos Apostolakis

Please note: You should fully justify your answers.

Logarithms and exponents

1. Verify that the following is a pair of inverse functions: $f(x)=\log _{2}(2 x+5)-3$ and $g(x)=\frac{2^{x+3}-5}{2}$
2. Expand: $\ln \sqrt[5]{\frac{x^{3} y^{4}}{z^{3} w^{2}}}$
3. Expand: $\quad \log \sqrt[3]{\frac{x^{2} y}{100 z^{5}}}$
4. Contract: $\log _{5} 3+\log _{5} 9-\log _{5} 27$
5. Contract: $\ln x-\ln \sqrt{x}+\ln \frac{1}{x^{2}}+\ln x^{3}$
6. Contract: $2 \ln x \sqrt{y}-\ln x^{2}$
7. Solve the following equation: $\quad 2^{x}=\frac{1}{64}$
8. Solve the following equation: $3^{x}=\sqrt[4]{27}$
9. Solve the following equation: $\quad 3 e^{2 x-1}=12$
10. Solve the following equation: $\quad 2^{2 x+3}=3^{x-1}$
11. Solve the following equation: $\log x=3$
12. Solve the following equation: $\quad \log _{2} \sqrt{x-1}=1$
13. Solve the following equation: $\quad \log (x-2)+\log (x+2)=2$
14. Solve the following equation: $\log _{2}(x+1)-\log _{2} x=1$
15. Solve the following equation: $\quad \log _{2}(x-4)+\log _{2}(x+2)=\log _{2} 7$
16. Solve the following equation: $\quad \log (x+1)+\log (x+2)=1$
17. Solve the following equation: $10^{2 x}-11 \cdot 10^{x}+10=0$
18. Solve the following equation: $e^{3 x}+e^{2 x}-2 e^{x}=0$
