Ninth set of Homework

Nikos Apostolakis

Please note: You should fully justify your answers.

Logarithms and exponents

- 1. Verify that the following is a pair of inverse functions: $f(x) = \log_2(2x+5) 3$ and $g(x) = \frac{2^{x+3} 5}{2}$
- $\ln \sqrt[5]{\frac{x^3y^4}{z^3w^2}}$ 2. Expand: $\log \sqrt[3]{\frac{x^2y}{100z^5}}$ 3. Expand: 4. Contract: $\log_5 3 + \log_5 9 - \log_5 27$ $\ln x - \ln \sqrt{x} + \ln \frac{1}{r^2} + \ln x^3$ 5. Contract: $2\ln x \sqrt{y} - \ln x^2$ 6. Contract: $2^x = \frac{1}{64}$ 7. Solve the following equation: $3^x = \sqrt[4]{27}$ 8. Solve the following equation: 9. Solve the following equation: 10. Solve the following equation: $\log x = 3$ 11. Solve the following equation: 12. Solve the following equation: 13. Solve the following equation: 14. Solve the following equation: 15. Solve the following equation:
- 16. Solve the following equation:17. Solve the following equation:
- 18. Solve the following equation:
- $3^{x} = \sqrt[4]{27}$ $3e^{2x-1} = 12$ $2^{2x+3} = 3^{x-1}$ $\log x = 3$ $\log_{2} \sqrt{x-1} = 1$ $\log(x-2) + \log(x+2) = 2$ $\log_{2}(x+1) \log_{2} x = 1$ $\log_{2}(x-4) + \log_{2}(x+2) = \log_{2} 7$ $\log(x+1) + \log(x+2) = 1$ $10^{2x} 11 \cdot 10^{x} + 10 = 0$ $e^{3x} + e^{2x} 2e^{x} = 0$