Third set of Homework

Nikos Apostolakis

Please note: You should fully justify your answers.

1 The difference quotient and one-to-one functions

1. Find a formula difference quotient of the following functions:
(a) $f(x)=7$
(b) $g(x)=-3 x+1$
(c) $f(x)=x^{2}-3 x$
(d) $g(x)=3 x^{2}-5 x+7$
(e) $f(x)=x^{3}+5 x$
(f) $g(x)=x^{3}-2 x^{2}+3 x+4$
2. Extra Credit For each of the functions of the previous question use the difference quotients you computed to decide whether the function is 1-1.

2 Inverse of functions

1. Verify that the following are pairs of inverse functions:
(a) $f(x)=3 x-\frac{1}{2}, g(x)=\frac{2 x+1}{6}$
(b) $f(x)=\sqrt[3]{x+5}, g(x)=x^{3}-5$
(c) $g(x)=\frac{3 x-2}{2 x+3}, h(x)=-\frac{3 x+2}{2 y-3}$
(d) $h(x)=x^{2}-3$ with domain $[0, \infty), g(x)=\sqrt{x+3}$
(e) $f(x)=2-\sqrt{x+7}, h(x)=x^{2}-4 x-3$ with domain $(-\infty, 2]$
(f) $f(x)=\log _{10}(3 x-5), g(x)=\frac{10^{x}+5}{3}$
2. Are the functions $f(x)=x^{2}$ and $g(x)=\sqrt{x}$ inverses?
3. A function is called an involution if it is its own inverse. In other words, a function f is an involution if for all x in the domain of f, we have that $(f \circ f)(x)=x$. Show that the following functions are involutions:
(a) $f(x)=\frac{1}{x}$
(b) $g(x)=\sqrt{16-x^{2}}$ with domain $[0,4]$
(c) $f(x)=\frac{2 x-3}{4 x-2}$
4. Extra Credit Is the function $f(x)=\sqrt{16-x^{2}}$ with domain $[-4,0]$ an involution? Justify your answer.
5. Extra Credit Is it possible to restrict the domain of the function $f(x)=42$ so that it becomes an involution?
6. For the following pair of functions determine the compositions $f \circ g$ and $g \circ f$. In each case you should give the domain as well as the formula.
(a) $f(x)=3 x-1, g(x)=2 x+3$
(b) $f(x)=x-2, g(x)=5 x^{2}-2$
(c) $f(x)=x^{2}-3 x+5, g(x)=2 x-3$
(d) $f(x)=-2 x^{2}+x-4, g(x)=x^{2}+1$
(e) $f(x)=x^{2}-4, g(x)=\sqrt{x+3}$
(f) $f(x)=\frac{2 x-1}{5 x+3}, g(x)=\frac{x+2}{x+1}$
(g) $f(x)=\sqrt{x-3}, g(x)=3-x$
(h) $f(x)=\frac{2 x}{x^{2}-4}, g(x)=\frac{1}{x}-2$
(i) $f(x)=x^{2}+4, g(x)=\sqrt{3-x}$
(j) $f(x)=x, g(x)=2^{\sin x}$
(k) $f(x)=-x, g(x)=\sqrt{x}$
(l) $f(x)=3, g(x)=x^{2}-5 x+5$
(m) $f(x)=x^{2}+3 x-7, g(x)=\sqrt{x-1}+1$
(n) $f(x)=\cos 3 x, g(x)=x^{2}-1$
(o) $f(x)=\log _{2} x, g(x)=-\sqrt{x+3}$
7. If $f(0)=-4$ and $g(-4)=6$ what is $(g \circ f)(0)$?
8. The graph of the functions f and g are shown in Figure 1. Find the following values:
(a) $(f \circ g)(0)$
(b) $(f \circ g)(-2)$
(c) $(g \circ f)(1)$
(d) $(g \circ f)(-1)$
(e) $(g \circ f)(-4)$

9 . Let $l(x)=x+3$. For each of the following functions f,
(a) find $f \circ l, l \circ f$
(b) graph $y=f(x), y=(f \circ l)(x),(l \circ f)(x)$ on the same grid.

1. $f(x)=x^{2}$
2. $f(x)=-x^{2}$
3. $f(x)=x^{3}$
4. $f(x)=|x|$
5. Repeat the previous exercise with $l(x)=x-2$

Figure 1: Two functions

Page 3

