Second set of Homework

Nikos Apostolakis

Please note: You should fully justify your answers.

1 Inverse of functions

1. Which of the following functions are one-to-one?
(a) $f(x)=42$
(b) $g(x)=-2 x+5$
(c) $h(x)=x^{2}-3$
(d) $f(x)=x^{2}+1$ with domain $[0, \infty)$.
(e) $g(x)=x^{3}$
(f) $h(x)=x^{3}-8$
(g) $g(x)=\sqrt{x+1}$
(h) $f(x)=\sqrt{1-x^{2}}$
(i) $f(x)=(x-2)^{3}$
(j) $h(x)=\frac{3}{2 x-4}$
(k) $g(x)=\frac{3 x+6}{x+1}$
(l) $f(x)=\frac{2 x-3}{5 x-2}$
(m) $f(x)=x^{2}-3 x+2$
(n) $g(x)=x^{2}+2 x+4$
(o) $h(x)=\sin x$
(p) $f(x)=2^{x+1}$
(q) $g(x)=\log _{2}(x-1)$
(r) $f(x)=(x-1)(x-2)(x-3)$.
2. For each of the functions of the above exercise except the last,
(a) if the function is one-to-one find the inverse function.
(b) if the function is not one-to-one then find a maximal interval so that restricting the function to that interval makes it one-to-one.
3. Give an example of a relation that is not a function but its inverse is a function.
4. Prove that if a function is one-to-one then its inverse function is also one-to-one.

The exercises in this page are Extra credit
Recall the following from the textbook:

- A function is called even, if the following two conditions are satisfied:

1. The domain of the function is "symmetric around 0 ", that is if a number a is in the domain then $-a$ is also in the domain.
2. For all a in the domain, $f(a)=f(-a)$.

- A function is called odd, if the following two conditions are satisfied:

1. The domain of the function is "symmetric around 0 ", that is if a number a is in the domain then $-a$ is also in the domain.
2. For all a in the domain, $f(a)=-f(-a)$.

To find out if a function is even, odd, or neither:

1. Find $f(-x)$ and simplify it (remember that, for example, $(-x)^{2}=x^{2}$, and $\left.(-x)^{3}=-x^{3}\right)$.
2. Compare $f(-x)$ with $f(x)$:

- If $f(-x)=f(x)$ then the function is even.
- If $f(-x)=-f(x)$ then the function is odd.
- If none of the above, the function is neither (most functions are neither).

5. Use the above procedure to determine whether the functions below are even, odd or neither:
(a) $f(x)=x^{2}+4$.
(b) $g(x)=\frac{x^{3}}{x^{2}+4}$.
(c) $h(x)=x^{2}+x$.
6. Can you give an example of an even function that is one-to-one?
7. Can you give an example of an odd function that is one-to-one?
