Third exam

The answers

1. Let $f(x)=x^{2}-3 x+2$ and $g(x)=x-2$. Find $f \circ g$.

Solution. We have:

$$
\begin{aligned}
(f \circ g)(x) & =f(g(x)) \\
& =(x-2)^{2}-3(x-2)+2 \\
& =x^{2}-4 x+4-3 x+6+2 \\
& =x^{2}-7 x+12
\end{aligned}
$$

2. Verify that $f(x)=\frac{x+2}{5}$ and $g(x)=5 x-2$ are a pair of inverse functions.

Solution. We need to verify that

- For all $x, f(g(x))=x$, and
- For all $x, g(f(x))=x$

For the first condition we have:

$$
\begin{aligned}
f(g(x)) & =\frac{(5 x-2)+2}{5} \\
& =\frac{5 x}{5} \\
& =x
\end{aligned}
$$

and for the second:

$$
\begin{aligned}
g(f(x)) & =5 \cdot \frac{x+2}{5}-2 \\
& =x+2-2 \\
& =x
\end{aligned}
$$

3. Let $f(x)=2^{x+1}$.
(a) Find the inverse function f^{-1}.

Solution. f expressed as a relation is $y=2^{x+1}$. It's inverse relation is then $x=2^{y+1}$.
To express this relation as a function we have to solve it for y :

$$
\begin{aligned}
x=2^{y+1} & \Longleftrightarrow \log _{2} x=\log _{2} 2^{y+1} \\
& \Longleftrightarrow \log _{2} x=y+1 \\
& \Longleftrightarrow \log _{2} x-1=y
\end{aligned}
$$

So the inverse function of f is given by $f^{-1}(x)=\log _{2} x-1$
(b) Sketch both $y=f(x)$ and $y=f^{-1}(x)$ on the same set of coordinates.

4. Solve: $x^{3}+3 x^{2}-9 x+5=0$

Solution. We'll try to find rational solutions. According to the Rational Zero Theorem the only possible rational roots of this equation are the divisors of its constant term 5 . So the only possible rational roots are $\{ \pm 1, \pm 5\}$.
We first try $x=1$:

1 | 1 | 3 | -9 | 5 |
| ---: | ---: | ---: | ---: |
| | 1 | 4 | -5 |
| 1 | 4 | -5 | 0 |

So $x=1$ is a solution. We try it again with the quotient to see if it is a double solution:

So $x=1$ is a double solution and the quotient of the original polynomial by $(x-1)^{2}$ is $x+5$. It follows that the original equation is equivalent to

$$
(x-1)^{2}(x+5)=0
$$

So the solutions are $x=1$ (double), and $x=-5$.
Remark. In the last question, after finding the first solution $x=1$ we could have used the quadratic formula (or factoring) to solve the quotient $x^{2}+4 x-5$.
5. Solve: $\log _{3}(2 x+1)-\log _{3}(x-2)=2$

Solution. We first find the domain of the functions involved to see when the equation is defined: all expressions that appear as arguments to logarithms have to be positive, so we need $2 x+1>0$ and $x-2>0$. The first condition is equivalent to $x>-\frac{1}{2}$ and the second to $x>2$. The equation is therefore defined when $x>2$, that is in the interval $(2, \infty)$.
Now we solve by first contracting the LHS and then exponentiation both sides:

$$
\begin{aligned}
\log _{3}(2 x+1)-\log _{3}(x-2)=2 & \Longleftrightarrow \log _{3}\left(\frac{2 x+1}{x-2}\right)=2 \\
& \Longleftrightarrow 3^{\log _{3}\left(\frac{2 x+1}{x-2}\right)=3^{2}} \\
& \Longleftrightarrow \frac{2 x+1}{x-2}=9 \\
& \Longleftrightarrow 2 x+1=9(x-2) \\
& \Longleftrightarrow 2 x+1=9 x-18 \\
& \Longleftrightarrow 19=7 x \\
& \Longleftrightarrow \frac{19}{7}=x
\end{aligned}
$$

Since $\frac{19}{7}>2$ this solution lies in the domain of the equation and is accepted.
6. Sketch a graph of the rational function:

$$
f(x)=\frac{2 x}{x^{2}-1}
$$

The graph should correctly reflect end behavior, x and y intercepts, and possible asymptotes

Solution. Since the denominator has larger degree than the numerator the x-axis will be a horizontal asymptote.
Vertical asymptotes are located at the roots of the denominator, that are not roots of the numerator. The denominator factors as $x^{2}-1=(x-1)(x+1)$ so we have two vertical asymptotes $x=1$ and $x=-1$.
The y-intercept is $f(0)=0$. The x-intercepts are the roots of the numerator so there is only one x-intercept $x=0$ (which happens to also be the y-intercept).
We have the following table of signs:

Putting all this together we get the following graph:

7. Sketch a complete cycle of $y=-\cos (2 x-\pi)$

Solution. The frequency of the function is 2 and therefore its period is $\frac{2 \pi}{2}=\pi$. The altitude is 1 and the starting point (phase shift) is given by $2 x-\pi=0$, that is, $x=\frac{\pi}{2}$. Also due to the negative sign the function will start at $y=-1$. A quarter of the period is $\frac{\pi}{4}$, so we construct a table of five values starting at the starting point $\frac{\pi}{2}$ and incrementing the x value by $\frac{\pi}{4}$, four times:

