Second Exam

Take home

Due: April 28

1. The graph of the ellipse

$$
\frac{(x-2)^{2}}{9}+\frac{(y+1)^{2}}{4}=1
$$

is shown bellow:

(a) Explain why this is not the graph of a function.
(b) How can we restrict the range so that we obtain a function?
(c) Is the function you obtained in the previous step one-to-one? If not how can you restrict the domain so that it becomes one-to-one?
2. Let $f(x)=\frac{2}{x-1}$ and $g(x)=\frac{3}{x}$. Find $f \circ g$. Your answer should include the domain as well as the formula.
3. Prove that $f(x)=\frac{2 x-5}{3 x+2}$ and $g(x)=-\frac{2 x+5}{3 x-2}$ are a pair of inverse functions.
4. Let $f(x)=\sqrt{x+1}$ and $g(x)=x^{2}-1$. Are f and g a pair of inverse functions? Justify your answer.
5. Sketch a graph of each of the following functions. The graph should correctly reflect end behavior, x and y intercepts, and possible asymptotes:
(a) $f(x)=-x^{3}+4 x^{2}+11 x-30$
(b) $g(x)=\frac{2 x+4}{x^{2}-3 x-18}$
6. Find the domain of each of the following functions:
(a) $f(x)=\sqrt{\frac{x+3}{x-4}}$
(b) $g(x)=\ln \left(x^{4}+2 x^{3}-16 x^{2}-2 x+15\right)$
7. Let $f(x)=e^{3 x-5}$.
(a) Find the inverse function f^{-1}.
(b) Sketch both functions on the same coordinate system.
8. Suppose $\log _{5} a=4, \log _{5} b=3$ and $\log _{5} c=-2$. Evaluate the following expression:

$$
\log _{5}\left(\frac{25 b^{3} \sqrt{a}}{c^{5}}\right)
$$

9. Solve $\log _{2}(2 x+8)-\log _{2}(x-3)=4$
10. Sketch two full cycles of the graph of $y=3 \sin 2 x$.
11. Extra Credit: Given that the remainder of the division

$$
\frac{x^{4}-2 x^{3}+5 x^{2}+10 x-20}{x-\sqrt{5}}
$$

is 30 , solve the following equation:

$$
x^{4}-2 x^{3}+5 x^{2}+10 x-50=0
$$

