Exercises for "graphs of polynomials"

(1) For each of the following, sketch a rough graph of the given function. The graph should correctly reflect the end behavior, the behavior near zeros and the number of turning points. The y-intercept should also be correctly marked.
(a) $p(x)=x^{4}+4 x^{3}+6 x^{2}+4 x+1$
(b) $g(x)=x^{3}-6 x^{2}+12 x-8$
(c) $h(x)=6 x^{3}-x^{2}-11 x+6$
(d) $k(x)=x^{4}-11 x^{2}+24$
(e) $f(x)=-2 x^{4}+4 x^{3}+22 x^{2}-24 x-72$
(f) $f(x)=x^{5}+2 x^{4}-6 x^{3}-8 x^{2}+5 x+6$
(g) $g(x)=x^{4}-5 x^{3}+x^{2}+21 x-18$
(h) $q(x)=3(2-x)(x-3)(x+1)^{2}$
(i) $p(x)=-2 x^{2}(x-3)^{5}(x+2)^{2}(x-1)(3 x-4)^{3}$
(j) $f(x)=(-2 x+1)(2 x+3)(x-4)^{3}(1-x)^{2}$
(2) Solve the following inequalities: (you may use the results from the previous exercise).
(a) $x^{5}+2 x^{4}-6 x^{3}-8 x^{2}+5 x+6 \leq 0$
(b) $x^{3}-6 x^{2}+12 x-8 \geq 0$
(c) $x^{4}-5 x^{3}+x^{2}+21 x-18<0$
(d) $-2 x^{4}+4 x^{3}+22 x^{2}-24 x-72>0$
(e) $x^{4}+4 x^{3}+6 x^{2}+4 x+1 \leq 0$
(3) For each of the following lists of properties, give an example of a polynomial $p(x)$ that has all of the properties.
(a) The degree of $p(x)$ is 3 and its graph intercepts the x-axis at the points $x=0$, $x=1$ and $x=3$. Additionally as $x \rightarrow \infty, p(x) \rightarrow-\infty$.
(b) The degree of $p(x)$ is 3 . The zeros of $p(x)$ are $-1,2,3$ and its constant term is 12.
(c) The only x-intercepts of $y=p(x)$ are $x=-3, x=1$, and $x=2$. As $x \rightarrow \infty$, $p(x) \rightarrow \infty$ and as $x \rightarrow-\infty, p(x) \rightarrow \infty$. The y-intercept of $y=p(x)$ is at $y=18$.
(d) The solution set of the inequality $p(x)<0$ is empty and the polynomial has exactly two real roots $x=1$ and $x=-1$. Additionally the leading coefficient is 4 and the constant term is 8 .
(4) Give two different proofs of the following: A real polynomial of odd degree has at least one real root.
(5) Extra Credit: Consider the following function:

$$
f(x)=3 x^{4}+4 x^{3}-13 x^{2}+12 x-4
$$

Prove that this function has at least one zero in the interval $(0,1)$, i.e. prove that for some a with $0<a<1$ we have that $f(a)=0$.

