BRONX COMMUNITY COLLEGE of the City University of New York DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

MATH 06
Nikos Apostolakis

Practice Exam 2
May 16, 2011

Name: \qquad

Directions: Write your answers in the provided space. To get full credit you must show all your work. Simplify your answers whenever possible. Be certain to indicate your final answer clearly. Each problem is worth 5 points

1. Subtract. Simplify your answer as much as possible: $\frac{2}{x-2}-\frac{7}{x^{2}+3 x-10}$
2. Divide. Simplify your answer as much as possible: $\frac{7 a}{a+5} \div \frac{a^{2}-5 a}{a^{2}+2 a-35}$
3. Solve: $\frac{5}{x-4}=\frac{77}{x^{2}-x-12}-\frac{11}{x+3}$
4. Solve: $\sqrt{x+20}-2 x=-5$

Page 2
5. Simplify: $\frac{\frac{3}{y}-\frac{5}{y+2}}{\frac{2}{y^{2}+2 y}}$
6. Graph the parabola $y=x^{2}-6 x+4$. Your graph should correctly indicate the vertex, the axis of symmetry, the x-intercepts, the y-intercept and the point symmetric to the y-intercept.

							A							

7. Solve: $3 x^{2}-10=2 x$
8. Find the center and radius of the circle with equation $x^{2}+6 x+y^{2}-4 y=-5$

Page 4
9. Simplify: $\left(\frac{64 x^{-13} y^{11}}{25 x^{3} y^{8}}\right)^{-\frac{1}{2}}$. Assume all variables represent positive numbers. The answer should contain only positive integers as exponents.
10. Divide: $\frac{5 i-1}{3 i+2}$. Express your answer in the form $a+b i$ where a and b are real numbers.
11. Find an equation of the line tangent of the circle $(x+2)^{2}+(y-3)^{2}=5$ at the point $(-4,4)$.
12. Determine an equation of the locus of points whose distance from the point $(0,4)$ is twice the distance from the line $y=2$.
13. Graph the ellipse with equation $\frac{x^{2}}{9}+\frac{y^{2}}{25}=1$. The graph should correctly indicate the center, the foci and the major and minor axes of the ellipse.

							A							

14. Find the common points of the line $y=2 x+1$ and the conic section $2 x^{2}-3 x+y^{2}+2 y=14$.
15. Simplify:
(a) $5 \sqrt{50}-2 \sqrt{72}+3 \sqrt{12}$
(b) $(2+\sqrt{5})^{2}$
16. In a right triangle $A B C$ we have $B=90^{\circ}, a=1$, and $b=2$ inches. Solve the triangle.
17. Find the exact value of each:
(a) $\sin 960^{\circ} \cdot \tan 315^{\circ}$
(b) $\cos 1920^{\circ}$
18. Find all angles θ, between 0° and 360° with $\cos \theta=0.62$. Round your answers to the nearest tenth of a degree.
19. An observer stands on level ground at a distance of 100 feet from the base of a building. How high, to the nearest foot, is the building if the angle of elevation is 25° ?
20. (a) Find r and θ.

(b) Find the coordinates of the point whose distance from $(0,0)$ is 6 and whose angle of reference is 150°
