Practice Exam 2 with answers

1. Subtract. Simplify your answer as much as possible: $\frac{2}{x-2}-\frac{7}{x^{2}+3 x-10}$

Answer: $\frac{2 x+3}{(x-2)(x+5)}$
2. Divide. Simplify your answer as much as possible: $\frac{7 a}{a+5} \div \frac{a^{2}-5 a}{a^{2}+2 a-35}$

Answer: $\frac{7 a+49}{a+5}$
3. Solve: $\frac{5}{x-4}=\frac{77}{x^{2}-x-12}-\frac{11}{x+3}$

Answer: $x=\frac{53}{8}$
4. Solve: $\sqrt{x+20}-2 x=-5$

Answer: $x=5$. (The solution $x=\frac{1}{4}$ is rejected.)
5. Simplify: $\frac{\frac{3}{y}-\frac{5}{y+2}}{\frac{2}{y^{2}+2 y}}$

Answer: 3-y
6. Graph the parabola $y=x^{2}-6 x+4$. Your graph should correctly indicate the vertex, the axis of symmetry, the x-intercepts, the y-intercept and the point symmetric to the y-intercept.

Answer: The vertex is at $(3,-5)$. The x-intercepts are at $(3 \pm \sqrt{5}, 0)$. The y-intercept is $(0,4)$, the point symmetric to it is $(6,4)$

7. Solve: $3 x^{2}-10=2 x$

Answer: $x=\frac{1 \pm \sqrt{31}}{3}$
8. Find the center and radius of the circle with equation $x^{2}+6 x+y^{2}-4 y=-5$

Answer: Center is at $(3,-2)$. Radius is $2 \sqrt{2}$.
9. Simplify: $\left(\frac{64 x^{-13} y^{11}}{25 x^{3} y^{8}}\right)^{-\frac{1}{2}}$. Assume all variables represent positive numbers. The answer should contain only positive integers as exponents.

Answer: $\frac{5 x^{8} \sqrt{y}}{8 y^{2}}$
10. Divide: $\frac{5 i-1}{3 i+2}$. Express your answer in the form $a+b i$ where a and b are real numbers.

Answer: $1+i$

11. Find an equation of the line tangent of the circle $(x+2)^{2}+(y-3)^{2}=5$ at the point $(-4,4)$.

Answer: $y=2 x+12$
12. Determine an equation of the locus of points whose distance from the point $(0,4)$ is twice the distance from the line $y=2$.

Answer: $x^{2}-3 y^{2}+8 y=0$
13. Graph the ellipse with equation $\frac{x^{2}}{9}+\frac{y^{2}}{25}=1$. The graph should correctly indicate the center, the foci and the major and minor axes of the ellipse.

14. Find the common points of the line $y=2 x+1$ and the conic section $2 x^{2}-3 x+y^{2}+2 y=14$.

Answer: $(1,3),\left(-\frac{11}{6},-\frac{8}{3}\right)$
15. Simplify:
(a) $5 \sqrt{50}-2 \sqrt{72}+3 \sqrt{12}$

Answer: $25 \sqrt{2}$
(b) $(2+\sqrt{5})^{2}$

$$
\text { Answer: } 9+4 \sqrt{5}
$$

16. In a right triangle $A B C$ we have $B=90^{\circ}, a=1$, and $b=2$ inches. Solve the triangle.

Answer: $c=\sqrt{3} . A=30^{\circ}, B=60^{\circ}$.
17. Find the exact value of each:
(a) $\sin 960^{\circ} \cdot \tan 315^{\circ}$

Answer: $\frac{\sqrt{3}}{2}$
(b) $\cos 1920^{\circ}$

$$
\text { Answer: }-\frac{1}{2}
$$

18. Find all angles θ, between 0° and 360° with $\cos \theta=0.62$. Round your answers to the nearest tenth of a degree.

Answer: $\theta \approx 51.7^{\circ}$ and $\theta \approx 308.3^{\circ}$
19. An observer stands on level ground at a distance of 100 feet from the base of a building. How high, to the nearest foot, is the building if the angle of elevation is 25° ?

Answer: To the nearest foot the building is 47 feet high.
20. (a) Find r and θ.

Answer: $r=2 \sqrt{2}, \theta=315^{\circ}$
(b) Find the coordinates of the point whose distance from $(0,0)$ is 6 and whose angle of reference is 150°

Answer: $(-3 \sqrt{3}, 3)$.

