Sixteenth Set of Homework

Nikos Apostolakis

Due: Monday March 28

Please note: You should fully justify your answers.

Trigonometric ratios and Cartesian coordinates

1. The point P is on the terminal side of an angle θ in standard position with $0^{\circ} \leq \theta < 360^{\circ}$. Draw θ , determine the values of $\sin \theta$, $\cos \theta$, $\tan \theta$, and $\cot \theta$. You should give *exact* answers.

A.
$$P(-3, -2)$$
 B. $P(4,3)$ C. $P(-\sqrt{3}, \sqrt{2})$ D. $P(2, -5)$ E. $P\left(\frac{3}{2}, -\frac{3\sqrt{3}}{2}\right)$

- 2. Find the measure in degrees of θ for each of the of the points in the previous question.
- 3. Find the possible reference angles for a point P that lies in the line with equation:

A.
$$y = x$$
 B. $y = -3x$ C. $y = x\sqrt{3}$ D. $2x + 3y = 0$ E. $3x - 5y = 0$

- 4. Extra Credit: Find the possible reference angles for a point P that lies in the line with equation 2x 4y = 5.
- 5. A point P is at distance r from the origin and its reference angle is θ . Find the coordinates of P if:

(a)
$$r = 3\sqrt{2}, \theta = 90^{\circ}$$

(b) $r = 5, \theta = 300^{\circ}$.

(c)
$$r = \sqrt{7}, \theta = 180^{\circ}.$$

- (d) r = 3.1 and $\theta = 203^{\circ}$.
- (e) r = 4.32 and $\theta = 98^{\circ}$.
- (f) r = 4, $\tan \theta = 5$, and P lies in the first quadrant.
- (g) r = 1, $\sin \theta = -\frac{\sqrt{2}}{2}$, and P lies in the third quadrant. (h) r = 4, $\sin \theta = \frac{3}{5}$, and $\cos \theta < 0$. (i) r = 8, $\cos \theta = \frac{2}{3}$ and P lies in the fourth quadrant.
- 6. A point is at distance 5 from the origin. The tangent of its reference angle is 2. Find the coordinates of the point.
- 7. A point P in the second quadrant is at distance $2\sqrt{2}$ from the origin. The tangent of its reference angle is -3. Find the point P.
- 8. A point P lies in the line with equation 2x 3y = 7. The tangent of its reference angle is 5. Find the point P.