Thirteenth Set of Homework

Nikos Apostolakis

Due: Monday March 14

Please note: You should fully justify your answers.

Trigonometric numbers of arbitrary angles

1. Use the values of this table:

θ	$\sin heta$	$\cos \theta$	an heta	$\cot \theta$
0°	0	1	0	und
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$
45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1
60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$
90°	1	0	und	0

to complete the table below:

θ	$\sin \theta$	$\cos \theta$	$\tan \theta$	$\cot \theta$
315°				
-780°				
150°				
240°				
650°				
-180°				
1800°				
210°				

2. Refer to Figure 1. Given that $\cos \theta = \frac{1}{4}$ find the sine the cosine the tangent and the cotangent of the angles θ , θ' , θ'' and θ'''

Figure 1: The arcs in Question 2

- 3. For the arc θ shown in Figure 2 we have that $\sin \theta = \frac{1}{3}$. Find an arc ϕ such that
 - (a) $\cos \phi = \frac{2\sqrt{2}}{3}$ and $\sin \phi = -\frac{1}{3}$ (b) $\cos \phi = -\frac{2\sqrt{2}}{3}$ and $\sin \phi = \frac{1}{3}$ (c) $\cos \phi = -\frac{2\sqrt{2}}{3}$ and $\tan \phi = \frac{\sqrt{2}}{4}$

Figure 2: The arc of Question 3

- 4. Find the sine, cosine, tangent, and cotangent of an angle ϕ that
 - (a) has $\sin \phi = .35$ and is in the first quadrant.
 - (b) has $\cos\phi=.2$ and is in the fourth quadrant.
 - (c) has $\sin \phi = \frac{\sqrt{5}}{5}$ and is in the second quadrant.
 - (d) has $\sin \phi = -\frac{2}{3}$ and is in the third quadrant.

- 5. Use your calculator to find an angle θ with $0^{\circ} \leq \theta < 360^{\circ}$ such that
 - (a) $\sin \theta = 0.544639$ and $\cos \theta < 0$
 - (b) $\cos \theta = .3456$ and $\sin \theta < 0$
 - (c) $\cos \theta = -0.6427876$ and $\tan \theta > 0$
 - (d) $\cot \theta = -0.383864$, $\cos \theta > 0$, and $\sin \theta < 0$
 - (e) $\cos \theta < 0$, $\sin \theta < 0$, and $\tan \theta = 1.428148$