Thirteenth Set of Homework

Nikos Apostolakis
Due: Monday March 14

Please note: You should fully justify your answers.

Trigonometric numbers of arbitrary angles

1. Use the values of this table:

θ	$\sin \theta$	$\cos \theta$	$\tan \theta$	$\cot \theta$
0°	0	1	0	und
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$
	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1
45°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$
60°	$\frac{\sqrt{2}}{2}$	0	und	0

to complete the table below:

θ	$\sin \theta$	$\cos \theta$	$\tan \theta$	$\cot \theta$
315°				
-780°				
150°				
240°				
650°				
-180°				
1800°				
210°				

2. Refer to Figure 1. Given that $\cos \theta=\frac{1}{4}$ find the sine the cosine the tangent and the cotangent of the angles $\theta, \theta^{\prime}, \theta^{\prime \prime}$ and $\theta^{\prime \prime \prime}$

Figure 1: The arcs in Question 2
3. For the $\operatorname{arc} \theta$ shown in Figure 2 we have that $\sin \theta=\frac{1}{3}$. Find an arc ϕ such that
(a) $\cos \phi=\frac{2 \sqrt{2}}{3}$ and $\sin \phi=-\frac{1}{3}$
(b) $\cos \phi=-\frac{2 \sqrt{2}}{3}$ and $\sin \phi=\frac{1}{3}$
(c) $\cos \phi=-\frac{2 \sqrt{2}}{3}$ and $\tan \phi=\frac{\sqrt{2}}{4}$

Figure 2: The arc of Question 3
4. Find the sine, cosine, tangent, and cotangent of an angle ϕ that
(a) has $\sin \phi=.35$ and is in the first quadrant.
(b) has $\cos \phi=.2$ and is in the fourth quadrant.
(c) has $\sin \phi=\frac{\sqrt{5}}{5}$ and is in the second quadrant.
(d) has $\sin \phi=-\frac{2}{3}$ and is in the third quadrant.
5. Use your calculator to find an angle θ with $0^{\circ} \leq \theta<360^{\circ}$ such that
(a) $\sin \theta=0.544639$ and $\cos \theta<0$
(b) $\cos \theta=.3456$ and $\sin \theta<0$
(c) $\cos \theta=-0.6427876$ and $\tan \theta>0$
(d) $\cot \theta=-0.383864, \cos \theta>0$, and $\sin \theta<0$
(e) $\cos \theta<0, \sin \theta<0$, and $\tan \theta=1.428148$

