Fourth Exam

Take home

Due: Thursday, April 28

1. The length of one leg of a right triangle is one unit more that the length of the other leg. The length of the hypotenuse is $\sqrt{41}$ units.
(a) Find the lengths of the two legs.
(b) Find the measure of the two acute angles of the triangle.
2. The angle of elevation of the top of a building taken 300 feet from the base of the building is 22°. Find the height of the building to the nearest foot.
3. Simplify: $5 \sqrt{52}-3 \sqrt{60}+2 \sqrt{13}+3 \sqrt{135}$
4. Simplify: $\frac{2 \sqrt{5}-5 \sqrt{2}}{\sqrt{10}-2}$
5. Simplify assuming all variables represent positive numbers. The answer should contain only positive integers as exponents.

$$
\left(\frac{27 x^{15} y^{-\frac{21}{2}}}{8 z^{-\frac{3}{2}}}\right)^{-\frac{1}{3}}
$$

6. Solve: $\sqrt{x-5}-\sqrt{x-1}=3$
7. Simplify. Express your answer in the form $a+b i$ where a and b are real numbers.

$$
\frac{(3+2 i)^{2}}{12-5 i}
$$

8. Divide: $\frac{2 x^{2}+4 x-30}{-x^{2}+11 x-24} \div \frac{-x^{2}+x+30}{x^{2}-14 x+48}$. Simplify the result as much as possible.
9. Simplify: $\frac{\frac{2}{b-3}-\frac{3}{b+2}}{1-\frac{11 b+7}{b^{2}-b-6}}$
10. Solve: $\frac{1}{x-2}+3=\frac{x}{x+3}+\frac{3 x^{2}+9 x-25}{x^{2}+x-6}$
11. Find all solutions θ, with $0^{\circ} \leq \theta<360^{\circ}$:

$$
2 \sin \theta=-1
$$

12. Find all angles θ with $0^{\circ} \leq \theta<360^{\circ}$ and $\tan \theta=-1.4$. Round your answers to the nearest hundredth.
13. A point has coordinates $(-6,-3)$. Find its angle of reference. Round your answer to the nearest hundredth.
14. A point is at distance 6 from the origin and its angle of reference is 240°. Find the coordinates of the point P.
15. A point P different than $(0,0)$ lies in the line with equation $y=5 x$. What are the possible angles of reference for P ?
16. The segment with endpoints $(-1,-2)$ and $(3,8)$ is a diameter of a circle.
(a) Give the equation of the circle in expanded form.
(b) What's the length of the circumference of this circle?
17. Find the common points of the circle $x^{2}-6 x+y^{2}+4 y=87$ and the line $y=3-x$.
18. Consider the circle C with equation $x^{2}+2 x+y^{2}-6 y=0$.
(a) Verify that the point $P(2,4)$ lies on the circle C.
(b) Find an equation for the line tangent to C at P.
19. Find the standard form of the equation of the ellipse with foci at $(0,-3)$ and $(0,3)$, given that the sum of the distances of a point in the ellipse from the two foci is 10 .
20. Sketch the graph of the ellipse:

$$
\frac{x^{2}}{25}+\frac{y^{2}}{4}=1
$$

The graph should correctly reflect the minor and major axis, the center and the foci.

