Third Exam

Take home

Due: Monday, April 11

1. One leg of a right triangle is 2 cm more than the other. If the hypotenuse is $\sqrt{7} \mathrm{~cm}$ (a) find the lengths of the two legs.
(b) Find the measures of the two acute angles of the triangle.
2. Simplify: $3 \sqrt{28}-\sqrt{700}+4 \sqrt{63}$
3. Simplify: $\frac{(3-\sqrt{2})^{2}}{1+\sqrt{2}}$
4. Simplify, assuming all variables represent positive numbers: $\sqrt{\frac{9 b^{8} c^{3}}{20 a^{7}}}$
5. Simplify assuming all variables represent positive numbers. The answer should contain only positive integers as exponents.

$$
\left(\frac{x^{21} y^{-\frac{15}{4}}}{z^{-\frac{9}{2}}}\right)^{-\frac{2}{3}}
$$

6. Solve: $x-\sqrt{x-4}=10$
7. Solve: $\sqrt{x}-\sqrt{x-9}=1$
8. Simplify. Express your answer in the form $a+b i$ where a and b are real numbers.

$$
\frac{(2-3 i)(i+1)+2+12 i}{3-5 i}
$$

9. Simplify: $\frac{x^{2}+10 x+25}{x^{2}+2 x-15}$
10. Divide : $\frac{x^{2}-4}{x^{2}+x-6} \div \frac{x^{2}+7 x+10}{x^{2}+8 x+15}$. Simplify the result as much as possible.
11. Combine: $\frac{2}{x}-\frac{2 x-3}{x^{2}-25}+\frac{5}{x-5}$. Simplify the result as much as possible.
12. Simplify: $\frac{\frac{a}{a-3}-\frac{3}{a+3}}{1+\frac{18}{a^{2}-9}}$
13. Solve: $\frac{1}{x^{2}}-15=-\frac{2}{x}$
14. Solve: $\frac{2}{x+7}+2=\frac{1}{x-3}-\frac{4 x+48}{x^{2}+4 x-21}$
15. Solve the triangle $A B C$, using the given information:

$$
\begin{array}{ll}
A=90^{\circ} & a=4 \mathrm{~cm} \\
B=30^{\circ} & b= \\
C= & c=
\end{array}
$$

16. A hot-air balloon rises vertically. An observer stands on level ground at a distance of 125 feet from a point on the ground directly below the passenger's compartment. How high, to the nearest foot, is the balloon if the angle of elevation is 20° ?
17. An angle θ has $\tan \theta=1.1917536$.
(a) Based on this information in which quadrants can the terminal point of θ lie?
(b) Find all possible such angles θ, with $0^{\circ} \leq \theta<360^{\circ}$.
18. A point has coordinates $(-2,5)$. Find its angle of reference.
19. A point is at distance 7 from the origin and has angle of reference 140°. Find its coordinates.
20. Find the length of the arc α, where the corner of the angle is at the center of the circle. Give an exact answer.

