Third Exam Take home

Due: Monday, April 11

- 1. One leg of a right triangle is 2 cm more than the other. If the hypotenuse is $\sqrt{7}$ cm
 - (a) find the lengths of the two legs.
 - (b) Find the measures of the two acute angles of the triangle.
- 2. Simplify: $3\sqrt{28} \sqrt{700} + 4\sqrt{63}$

3. Simplify:
$$\frac{(3-\sqrt{2})^2}{1+\sqrt{2}}$$

- 4. Simplify, assuming all variables represent positive numbers: $\sqrt{\frac{9b^8c^3}{20a^7}}$
- 5. Simplify assuming all variables represent positive numbers. The answer should contain only positive integers as exponents.

$$\left(\frac{x^{21}y^{-\frac{15}{4}}}{z^{-\frac{9}{2}}}\right)^{-\frac{2}{3}}$$

- 6. Solve: $x \sqrt{x 4} = 10$
- 7. Solve: $\sqrt{x} \sqrt{x-9} = 1$
- 8. Simplify. Express your answer in the form a + bi where a and b are real numbers.

$$\frac{(2-3i)(i+1)+2+12i}{3-5i}$$

9. Simplify: $\frac{x^2 + 10x + 25}{x^2 + 2x - 15}$

10. Divide : $\frac{x^2-4}{x^2+x-6} \div \frac{x^2+7x+10}{x^2+8x+15}$. Simplify the result as much as possible.

- 11. Combine: $\frac{2}{x} \frac{2x-3}{x^2-25} + \frac{5}{x-5}$. Simplify the result as much as possible.
- 12. Simplify: $\frac{\frac{a}{a-3} \frac{3}{a+3}}{1 + \frac{18}{a^2 9}}$

13. Solve: $\frac{1}{x^2} - 15 = -\frac{2}{x}$ 14. Solve: $\frac{2}{x+7} + 2 = \frac{1}{x-3} - \frac{4x+48}{x^2+4x-21}$

15. Solve the triangle ABC, using the given information:

- 16. A hot-air balloon rises vertically. An observer stands on level ground at a distance of 125 feet from a point on the ground directly below the passenger's compartment. How high, to the nearest foot, is the balloon if the angle of elevation is 20°?
- 17. An angle θ has $\tan \theta = 1.1917536$.
 - (a) Based on this information in which quadrants can the terminal point of θ lie?
 - (b) Find all possible such angles θ , with $0^{\circ} \leq \theta < 360^{\circ}$.
- 18. A point has coordinates (-2, 5). Find its angle of reference.
- 19. A point is at distance 7 from the origin and has angle of reference 140° . Find its coordinates.
- 20. Find the length of the arc α , where the corner of the angle is at the center of the circle. Give an exact answer.

