Third Exam

Take home

The answers

1. One leg of a right triangle is 2 cm more than the other. If the hypotenuse is $\sqrt{7} \mathrm{~cm}$
(a) find the lengths of the two legs.

Solution. Let x be the length of the smaller leg, in centimeters, then the larger leg has length $x+2$. The Pythagorean theorem then gives:

$$
\begin{aligned}
x^{2}+(x+2)^{2}=(\sqrt{7})^{2} & \Longleftrightarrow x^{2}+x^{2}+4 x+4=7 \\
& \Longleftrightarrow 2 x^{2}+4 x-3=0
\end{aligned}
$$

We solve the last equation using the quadratic formula. The discriminant is $D=$ $4^{2}-4 \cdot 2 \cdot(-3)=40$ so the two solutions are:

$$
x=\frac{-4 \pm \sqrt{40}}{4}=\frac{-4 \pm 2 \sqrt{10}}{4}=\frac{-2 \pm \sqrt{10}}{2}
$$

Since lengths of sides are positive, the solution $x=\frac{-2-\sqrt{10}}{2}$ is rejected. So the length of the smaller leg is $\frac{-2+\sqrt{10}}{2}$. The length of the larger leg is then

$$
\frac{-2+\sqrt{10}}{2}+2=\frac{2+\sqrt{10}}{2}
$$

(b) Find the measures of the two acute angles of the triangle.

Solution. Let A, B, and C be the angles of the triangle with $A=90^{\circ}, B$ the acute angle opposite of the smaller leg and C the acute angle opposite of the larger leg. Then we can compute the tangent of the angle B :

$$
\begin{aligned}
\tan B & =\frac{\frac{-2+\sqrt{10}}{2}}{\frac{2+\sqrt{10}}{2}} \\
& =\frac{-2+\sqrt{10}}{2+\sqrt{10}} \\
& \approx 0.225148226555
\end{aligned}
$$

So $B \approx \tan ^{-1}(0.225148226555)=12.6884667626^{\circ}$. Rounding to the nearest hundredth we have $B \approx 12.69^{\circ}$. Then $C \approx 90^{\circ}-12.69^{\circ}=77.31^{\circ}$.
2. Simplify: $3 \sqrt{28}-\sqrt{700}+4 \sqrt{63}$

Solution.

$$
\begin{aligned}
3 \sqrt{28}-\sqrt{700}+4 \sqrt{63} & =3 \sqrt{4 \cdot 7}-\sqrt{7 \cdot 100}+4 \sqrt{7 \cdot 9} \\
& =3 \cdot 2 \sqrt{7}-10 \sqrt{7}+4 \cdot 3 \sqrt{7} \\
& =6 \sqrt{7}-10 \sqrt{7}+12 \sqrt{7} \\
& =8 \sqrt{7}
\end{aligned}
$$

3. Simplify: $\frac{(3-\sqrt{2})^{2}}{1+\sqrt{2}}$

Solution.

$$
\begin{aligned}
\frac{(3-\sqrt{2})^{2}}{1+\sqrt{2}} & =\frac{9-6 \sqrt{2}+2}{1+\sqrt{2}} \\
& =\frac{11-6 \sqrt{2}}{1+\sqrt{2}} \\
& =\frac{11-6 \sqrt{2}}{1+\sqrt{2}} \cdot \frac{1-\sqrt{2}}{1-\sqrt{2}} \\
& =\frac{11-11 \sqrt{2}-6 \sqrt{2}+12}{1-2} \\
& =\frac{23-17 \sqrt{2}}{-1} \\
& =17 \sqrt{2}-23
\end{aligned}
$$

4. Simplify, assuming all variables represent positive numbers: $\sqrt{\frac{9 b^{8} c^{3}}{20 a^{7}}}$

Solution.

$$
\begin{aligned}
\sqrt{\frac{9 b^{8} c^{3}}{20 a^{7}}} & =\frac{3 b^{4} c \sqrt{c}}{2 \sqrt{5} a^{3} \sqrt{a}} \\
& =\frac{3 b^{4} c \sqrt{c}}{2 a^{3} \sqrt{5 a}} \cdot \frac{\sqrt{5 a}}{\sqrt{5 a}} \\
& =\frac{3 b^{4} c \sqrt{5 a c}}{10 a^{4}}
\end{aligned}
$$

Page 2
5. Simplify assuming all variables represent positive numbers. The answer should contain only positive integers as exponents.

$$
\left(\frac{x^{21} y^{-\frac{15}{4}}}{z^{-\frac{9}{2}}}\right)^{-\frac{2}{3}}
$$

Solution.

$$
\begin{aligned}
\left(\frac{x^{21} y^{-\frac{15}{4}}}{z^{-\frac{9}{2}}}\right)^{-\frac{2}{3}} & =\frac{x^{21 \frac{-2}{3}} y^{-\frac{15}{4} \frac{-2}{3}}}{z^{-\frac{9}{2} \frac{-2}{3}}} \\
& =\frac{x^{-14} y^{\frac{5}{2}}}{z^{3}} \\
& =\frac{y^{2} \sqrt{y}}{x^{14} z^{3}}
\end{aligned}
$$

6. Solve: $x-\sqrt{x-4}=10$

Solution. We first isolate the radical, and then square both sides:

$$
\begin{aligned}
x-\sqrt{x-4}=10 & \Longleftrightarrow-\sqrt{x-4}=10-x \\
& \Longleftrightarrow(-\sqrt{x-4})^{2}=(10-x)^{2} \\
& \Longleftrightarrow x-4=100-20 x+x^{2} \\
& \Longleftrightarrow 0=104-21 x+x^{2}
\end{aligned}
$$

The last equation is quadratic. We solve using the quadratic formula: the discriminant is $D=(-21)^{2}-4 \cdot 1 \cdot 104=25=5^{2}$. So we have two solutions:

$$
x=\frac{21 \pm 5}{2}=\left\{\begin{array}{r}
13 \\
8
\end{array}\right.
$$

We now need to check whether these are solutions of the original equation. We first check $x=13$:

$$
13-\sqrt{13-4}=10 \Longleftrightarrow 13-3=10
$$

which is a true equation. Thus $x=13$ is a solution.
We then check $x=8$:

$$
8-\sqrt{8-4}=10 \Longleftrightarrow 8-2=10
$$

which is a false equation. Thus $x=8$ is extraneous. So, the original equation has only one solution $x=13$.
7. Solve: $\sqrt{x}-\sqrt{x-9}=1$

Solution. We first make the LHS to contain a single radical expression and then we square both sides, then we isolate the remaining radical expression in the RHS and square again:

$$
\begin{aligned}
\sqrt{x}-\sqrt{x-9}=1 & \Longleftrightarrow-\sqrt{x-9}=1-\sqrt{x} \\
& \Longleftrightarrow(-\sqrt{x-9})^{2}=(1-\sqrt{x})^{2} \\
& \Longleftrightarrow x-9=1-2 \sqrt{x}+x \\
& \Longleftrightarrow-10=-2 \sqrt{x} \\
& \Longleftrightarrow 5=\sqrt{x} \\
& \Longleftrightarrow(5)^{2}=(\sqrt{x})^{2} \\
& \Longleftrightarrow 25=x
\end{aligned}
$$

We now need to check whether $x=25$ is a solution to the original equation:

$$
\sqrt{25}-\sqrt{25-9}=1 \Longleftrightarrow 5-4=1
$$

which is a true equation. Thus $x=25$ is the solution.
8. Simplify. Express your answer in the form $a+b i$ where a and b are real numbers.

$$
\frac{(2-3 i)(i+1)+2+12 i}{3-5 i}
$$

Solution.

$$
\begin{aligned}
\frac{(2-3 i)(i+1)+2+12 i}{3-5 i} & =\frac{2 i+2+3-3 i+2+12 i}{3-5 i} \\
& =\frac{7+11 i}{3-5 i} \\
& =\frac{7+11 i}{3-5 i} \cdot \frac{3+5 i}{3+5 i} \\
& =\frac{21+35 i+33 i-55}{9+25} \\
& =\frac{-34+88 i}{34} \\
& =-1+2 i
\end{aligned}
$$

9. Simplify: $\frac{x^{2}+10 x+25}{x^{2}+2 x-15}$

Solution. We factor numerator and denominator and then cancel possible common factors:

$$
\begin{aligned}
\frac{x^{2}+10 x+25}{x^{2}+2 x-15} & =\frac{(x+5)^{2}}{(x+5)(x-3)} \\
& =\frac{x+5}{x-3}
\end{aligned}
$$

10. Divide : $\frac{x^{2}-4}{x^{2}+x-6} \div \frac{x^{2}+7 x+10}{x^{2}+8 x+15}$. Simplify the result as much as possible.

Solution.

$$
\begin{aligned}
\frac{x^{2}-4}{x^{2}+x-6} \div \frac{x^{2}+7 x+10}{x^{2}+8 x+15} & =\frac{x^{2}-4}{x^{2}+x-6} \div \frac{x^{2}+7 x+10}{x^{2}+8 x+15} \\
& =\frac{(x+2)(x-2)}{(x+3)(x-2)} \cdot \frac{(x+3)(x+5)}{(x+2)(x+5)} \\
& =\frac{x+2}{x+3} \cdot \frac{x+3}{x+2} \\
& =1
\end{aligned}
$$

11. Combine: $\frac{2}{x}-\frac{2 x-3}{x^{2}-25}+\frac{5}{x-5}$. Simplify the result as much as possible.

Solution. The LCD of all denominators is $x(x-5)(x+5)$. So we have:

$$
\begin{aligned}
\frac{2}{x}-\frac{2 x-3}{x^{2}-25}+\frac{5}{x-5} & =\frac{2(x-5)(x+5)}{x(x-5)(x+5)}-\frac{x(2 x-3)}{x\left(x^{2}-25\right)}+\frac{5 x(x+5)}{x(x-5)(x+5)} \\
& =\frac{2 x^{2}-50-2 x^{2}+3 x+5 x^{2}+25 x}{x(x-5)(x+5)} \\
& =\frac{5 x^{2}+28 x-50}{x(x-5)(x+5)}
\end{aligned}
$$

12. Simplify: $\frac{\frac{a}{a-3}-\frac{3}{a+3}}{1+\frac{18}{a^{2}-9}}$

Solution. We multiply both numerator and denominator with the LCD $a^{2}-9$:

$$
\begin{aligned}
\frac{\frac{a}{a-3}-\frac{3}{a+3}}{1+\frac{18}{a^{2}-9}} & =\frac{a(a+3)-3(a-3)}{a^{2}-9+18} \\
& =\frac{a^{2}+3 a-3 a+9}{a^{2}+9} \\
& =\frac{a^{2}+9}{a^{2}+9} \\
& =1
\end{aligned}
$$

13. Solve: $\frac{1}{x^{2}}-15=-\frac{2}{x}$

Solution. We first find when all the expressions are defined: all denominators have to be non-zero. So we must have: $x \neq 0$. Then we multiply both sides with the LCD x^{2}.

$$
\begin{aligned}
\frac{1}{x^{2}}-15=-\frac{2}{x} & \Longleftrightarrow 1-15 x^{2}=-2 x \\
& \Longleftrightarrow 0=15 x^{2}-2 x-1
\end{aligned}
$$

The last equation is quadratic. Its discriminant is $D=(-2)^{2}-4 \cdot 15 \cdot(-1)=64=8^{2}$. So the solutions are:

$$
x=\frac{2 \pm 8}{30}=\left\{\begin{array}{r}
\frac{1}{3} \\
-\frac{1}{5}
\end{array}\right.
$$

The equation is defined for both solutions, so they are both accepted.
14. Solve: $\frac{2}{x+7}+2=\frac{1}{x-3}-\frac{4 x+48}{x^{2}+4 x-21}$

Solution. The equation is defined for $x \neq-7$ and $x \neq 3$. The LCD of all denominators is $(x+7)(x-3)$, so after multiplying both sides with the LCD we obtain:

$$
\begin{aligned}
\frac{2}{x+7}+2=\frac{1}{x-3}-\frac{4 x+48}{x^{2}+4 x-21} & \Longleftrightarrow 2(x-3)+2(x-3)(x+7)=x+7-(4 x+48) \\
& \Longleftrightarrow 2 x-6+2 x^{2}+8 x-42=x+7-4 x-48 \\
& \Longleftrightarrow 2 x^{2}+10 x-48=-3 x-41 \\
& \Longleftrightarrow 2 x^{2}+13 x-7=0
\end{aligned}
$$

The discriminant of the last equation is $13^{2}-4 \cdot 2 \cdot(-7)=225=15^{2}$. So we get the solutions;

$$
x=\frac{-13 \pm 15}{4}=\left\{\begin{array}{r}
\frac{1}{2} \\
-7
\end{array}\right.
$$

The equation is not defined for $x=-7$ so this solution is rejected. Thus the only solution is $x=\frac{1}{2}$
15. Solve the triangle $A B C$, using the given information:
$A=90^{\circ}$
$a=4 \mathrm{~cm}$
$B=30^{\circ} \quad b=$
$C=\quad c=$

Page 6

Solution. The sum of the two acute angles of the triangle is 90°. So, $B+C=90^{\circ} \Longrightarrow$ $30^{\circ}+C=90^{\circ} \Longrightarrow C=60^{\circ}$.
Since $B=30^{\circ}$ we have:

$$
\begin{aligned}
\sin 30^{\circ}=\frac{b}{4} & \Longleftrightarrow \frac{1}{2}=\frac{b}{4} \\
& \Longleftrightarrow b=2
\end{aligned}
$$

To find C we can use the Pythagorean theorem:

$$
\begin{aligned}
c^{2}+2^{2}=4^{2} & \Longleftrightarrow c^{2}+4=16 \\
& \Longleftrightarrow c^{2}=12 \\
& \Longleftrightarrow c=\sqrt{12} \\
& \Longleftrightarrow c=2 \sqrt{3}
\end{aligned}
$$

In sum:
$A=90^{\circ} \quad a=4 \mathrm{~cm}$
$B=30^{\circ} \quad b=2 \mathrm{~cm}$
$C=60^{\circ} \quad c=2 \sqrt{3} \mathrm{~cm}$

16. A hot-air balloon rises vertically. An observer stands on level ground at a distance of 125 feet from a point on the ground directly below the passenger's compartment. How high, to the nearest foot, is the balloon if the angle of elevation is 20° ?

Solution. Representing the passenger compartment of the balloon by a point A, the point on the ground directly bellow it by B and the point where the observer stands by C we have the following figure:

If the height of the balloon is x feet then we have:

$$
\begin{aligned}
\tan 20^{\circ}=\frac{x}{125} & \Longrightarrow x=125 \tan 20^{\circ} \\
& \Longrightarrow x \approx 45.4962792833
\end{aligned}
$$

Thus, to the nearest foot, the balloon is 45 feet high.
17. An angle θ has $\tan \theta=1.1917536$.
(a) Based on this information in which quadrants can the terminal point of θ lie?

Solution. Since the tangent of the angle is positive its terminal point lies either in quadrant I or quadrant III.
(b) Find all possible such angles θ, with $0^{\circ} \leq \theta<360^{\circ}$.

Solution. Using a calculator we see that $\tan ^{-1} 1.1917536 \approx 50^{\circ}$. So one of the angles (the one in the first quadrant) is 50°. The other angle (the one in the third quadrant) is $180^{\circ}+50^{\circ}=230^{\circ}$.
18. A point has coordinates $(-2,5)$. Find its angle of reference.

Solution. If θ is the angle of reference then the terminal point of θ is in quadrant II and we have:

$$
\begin{aligned}
\tan \theta=\frac{y}{x} & \Longrightarrow \tan \theta=\frac{5}{-2} \\
& \Longrightarrow \tan \theta=-2.5
\end{aligned}
$$

Using the calculator we see that $\tan ^{-1} 2.5 \approx 68.2^{\circ}$. So the angle in quadrant II with $\tan \theta=-2.5$ is approximately

$$
\theta \approx 180^{\circ}-68.2=111.8
$$

19. A point is at distance 7 from the origin and has angle of reference 140°. Find its coordinates.

Solution. We know that if θ is the angle of reference and r is the distance of a point from the origin then

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned}
$$

In our case $r=7$ and $\theta=140^{\circ}$. So:

$$
\begin{aligned}
& x=7 \cos 140^{\circ} \quad \approx-5.36231110183 \\
& y=7 \sin 140^{\circ} \quad \approx 4.49951326781
\end{aligned}
$$

So rounded to the second decimal point the coordinates of P are $(-5.36,4.50)$.
20. Find the length of the arc α, where the corner of the angle is at the center of the circle. Give an exact answer.

Solution. The arc α is $\frac{225}{360}=\frac{5}{8}$ of the whole circle. So its length will be $\frac{5}{8}$ of the length of the whole circle. Now since the radius is 1 the length of the whole circle is 2π. It follows that the length of the $\operatorname{arc} \alpha$ is:

$$
\frac{5}{8}(2 \pi)=\frac{5 \pi}{4}
$$

