Additional Review Questions for the Math 30 final

Nikos Apostolakis

May 23, 2010

1. Find the domain of each of the following functions:

(a)
$$f(x) = \ln(x^2 + x - 6)$$
 $(-\infty, -3) \cup (2, \infty)$
(b) $g(x) = \log_3 \frac{x+3}{x-4}$ $(-\infty, -3) \cup (4, \infty)$
(c) $h(x) = \sqrt{x^2 - 8x + 16}$ $(-\infty, 4) \cup (4, \infty)$
(d) $h(x) = \sqrt{-x^3 - 2x^2 + 9x + 18}$ $(-\infty, -3] \cup [-2, 3]$
(e) $k(x) = \frac{2x-3}{2x^3 - x^2 - 7x + 6}$ $(-\infty, -2) \cup (-2, 1) \cup (1, \frac{3}{2}) \cup (\frac{3}{2}, \infty)$

2. For each of the following pair of functions find the formula and the domain for $f \circ g$ and $g \circ f$.

(a)
$$f(x) = \frac{2x-3}{x-2}, g(x) = \frac{2x}{3x-1}$$

Answer. Domain of $f \circ g$ is $(-\infty, \frac{1}{3}) \cup (\frac{1}{3}, \frac{1}{2}) \cup (\frac{1}{2}, \infty)$. The formula for $f \circ g$ is $(f \circ g)(x) = \frac{5x - 3}{4x - 2}$ Domain of $g \circ f$ is $(-\infty, \frac{7}{5}) \cup (\frac{7}{5}, 2) \cup (2, \infty)$. The formula for $g \circ f$ is $(g \circ f)(x) = \frac{4x - 6}{5x - 7}$

(b)
$$f(x) = \frac{3}{x^2 - 4}, g(x) = \sqrt{x + 2}$$

Answer. Domain of $f \circ g$ is $[-2, 2) \cup (2, \infty)$. The formula for $f \circ g$ is
 $(f \circ g)(x) = \frac{3}{x - 2}$
Domain of $g \circ f$ is $(-\infty, 2) \cup [-\frac{\sqrt{10}}{2}, \frac{\sqrt{10}}{2}] \cup (2, \infty)$. The formula for $g \circ f$ is
 $(g \circ f)(x) = \sqrt{\frac{2x^2 - 5}{x^2 - 4}}$
(c) $f(x) = x^2 - 2x + 4$ and $g(x) = 1 - \sqrt{x - 3}$

Answer. Domain $f \circ g$ is $[3, \infty)$. The formula for $f \circ g$ is $(f \circ g)(x) = x$. Domain of $g \circ f$ is \mathbb{R} . The formula for $g \circ f$ is $(g \circ f)(x) = 1 - |x - 1|$.

3. For each of the following functions find the domain, the range and the inverse function.

(a) $g(x) = \sqrt{3x - 4}$

Answer. Domain is $\left[\frac{4}{3},\infty\right)$. Range is $[0,\infty)$. The inverse function is $g^{-1}(x) = \frac{x^2+4}{3}$

(b) $f(x) = \frac{2x}{3x-1}$

Answer. Domain is $(-\infty, \frac{1}{3}) \cup (\frac{1}{3}, \infty)$. Range is $(-\infty, \frac{2}{3}) \cup (\frac{2}{3}, \infty)$. The inverse function is $f^{-1}(x) = \frac{x}{3x-2}$.

(c) $k(x) = 2x^2 - 4x + 9$, with domain $(-\infty, 1]$

Answer. Domain is $(-\infty, 1]$. Range is $[7, \infty)$. The inverse is $k^{-1}(x) = \frac{2 - \sqrt{2x - 14}}{2}$

(d) $f(x) = -x^2 + 6x - 8$, with domain $[3, \infty)$ Answer. Domain is $[3, \infty)$. Range is $(-\infty, 1]$. Inverse is $f^{-1}(x) = 3 + \sqrt{1-x}$

(e)
$$h(x) = 2^{4x-5}$$

Proof. Domain is \mathbb{R} . Range is $(0, \infty)$. Inverse is $h^{-1}(x) = \frac{\log_2 x + 5}{4}$

(f)
$$g(x) = \ln(5x - 2) + 3$$

Answer. Domain is
$$(\frac{2}{5}, \infty)$$
. Range is \mathbb{R} . Inverse is $g^{-1}(x) = \frac{e^{x-3}+2}{5}$.

4. Solve:

(a)
$$x^4 - x^3 - 7x^2 + x + 6 = 0$$
 $x = -2$, $x = -1$, $x = 1$, $x = 3$
(b) $x^4 - 3x^3 + 3x^2 + 12x - 28 = 0$ $x = -2$, $x = 2$, $x = \frac{3 + i\sqrt{19}}{2}$, $x = \frac{3 - i\sqrt{19}}{2}$
(c) $x^3 - 6x^2 + 11x - 6 \ge 0$ $[1, 2] \cup [3, \infty)$

5. Solve each of the following equations:

(a)
$$e^{2x} - 3e^x + 2 = 0$$
 $x = \ln 1$, $x = \ln 2$
(b) $2^{4x} - 10 \cdot 2^{2x} + 9 = 0$ $x = 0$, $x = \log_2 3$
(c) $\log_3(x-1) + \log_3(x+2) = 1$ $x = \frac{\sqrt{21} - 1}{2}$

6. Solve the following equations. You should give all solutions.

(a)
$$\cos^2 x - \cos x = 0$$

Answer. Three families of solutions: $x = 2k\pi$, $x = \frac{\pi}{2} + 2k\pi$, $x = -\frac{\pi}{2} + 2k\pi$, where in each formula k is an arbitrary integer.

(b)
$$2\sin^2 x - \sin x - 1 = 0$$

Answer. Three families of solutions: $x = \frac{\pi}{2} + 2k\pi$, $x = -\frac{\pi}{6} + 2k\pi$, $x = \frac{7\pi}{6} + 2k\pi$, where in each formula k is an arbitrary integer.

(c) $\cos 3x = \frac{\sqrt{3}}{2}$

Answer. Two families of solution $x = \frac{12k\pi \pm \pi}{18}$, where k is an arbitrary integer.

(d)
$$4\sin^4 x + 4\sin^3 x - \sin^2 x - \sin x = 0$$

Answer. $x = 2k\pi$, $x = 2k\pi + \pi$, $x = \frac{\pi}{2} + 2k\pi$, $x = \frac{\pi}{4} + 2k\pi$, $x = -\frac{\pi}{4} + 2k\pi$, $x = \frac{5\pi}{4} + 2k\pi$, $x = \frac{3\pi}{4} + 2k\pi$, where in each formula k stands for an arbitrary integer.

7. For each of the sinusoidal curves in Figures 1 and 2 find an equation of the form:

- (a) $A\sin(Bx+C)$ with A > 0
- (b) $A\sin(Bx+C)$ with A < 0
- (c) $A\cos(Bx+C)$ with A > 0
- (d) $A\cos(Bx+C)$ with A < 0

Figure 1: A sinusoidal curve

Answer. The curve in Figure 1 has equations:

1.
$$y = 2\sin(2x + \frac{\pi}{3})$$

2. $y = -2\sin(2x - \frac{2\pi}{3})$
3. $y = 2\cos(2x - \frac{\pi}{6})$
4. $y = -2\cos(2x + \frac{5\pi}{6})$

The curve in Figure 2 has equations:

Figure 2: Another sinusoidal curve