Additional Review Questions for the Math 30 final

Nikos Apostolakis

May 23, 2010

1. Find the domain of each of the following functions:
(a) $f(x)=\ln \left(x^{2}+x-6\right) \quad(-\infty,-3) \cup(2, \infty)$
(b) $g(x)=\log _{3} \frac{x+3}{x-4} \quad(-\infty,-3) \cup(4, \infty)$
(c) $h(x)=\sqrt{x^{2}-8 x+16} \quad(-\infty, 4) \cup(4, \infty)$
(d) $h(x)=\sqrt{-x^{3}-2 x^{2}+9 x+18} \quad(-\infty,-3] \cup[-2,3]$
(e) $k(x)=\frac{2 x-3}{2 x^{3}-x^{2}-7 x+6} \quad(-\infty,-2) \cup(-2,1) \cup\left(1, \frac{3}{2}\right) \cup\left(\frac{3}{2}, \infty\right)$
2. For each of the following pair of functions find the formula and the domain for $f \circ g$ and $g \circ f$.
(a) $f(x)=\frac{2 x-3}{x-2}, g(x)=\frac{2 x}{3 x-1}$

Answer. Domain of $f \circ g$ is $\left(-\infty, \frac{1}{3}\right) \cup\left(\frac{1}{3}, \frac{1}{2}\right) \cup\left(\frac{1}{2}, \infty\right)$. The formula for $f \circ g$ is $(f \circ g)(x)=\frac{5 x-3}{4 x-2}$
Domain of $g \circ f$ is $\left(-\infty, \frac{7}{5}\right) \cup\left(\frac{7}{5}, 2\right) \cup(2, \infty)$. The formula for $g \circ f$ is $(g \circ f)(x)=\frac{4 x-6}{5 x-7}$
(b) $f(x)=\frac{3}{x^{2}-4}, g(x)=\sqrt{x+2}$

Answer. Domain of $f \circ g$ is $[-2,2) \cup(2, \infty)$. The formula for $f \circ g$ is $(f \circ g)(x)=\frac{3}{x-2}$
Domain of $g \circ f$ is $(-\infty, 2) \cup\left[-\frac{\sqrt{10}}{2}, \frac{\sqrt{10}}{2}\right] \cup(2, \infty)$. The formula for $g \circ f$ is
$(g \circ f)(x)=\sqrt{\frac{2 x^{2}-5}{x^{2}-4}}$
(c) $f(x)=x^{2}-2 x+4$ and $g(x)=1-\sqrt{x-3}$

Answer. Domain $f \circ g$ is $[3, \infty)$. The formula for $f \circ g$ is $(f \circ g)(x)=x$.
Domain of $g \circ f$ is \mathbb{R}. The formula for $g \circ f$ is $(g \circ f)(x)=1-|x-1|$.
3. For each of the following functions find the domain, the range and the inverse function.
(a) $g(x)=\sqrt{3 x-4}$

Answer. Domain is $\left[\frac{4}{3}, \infty\right)$. Range is $[0, \infty)$. The inverse function is $g^{-1}(x)=\frac{x^{2}+4}{3}$
(b) $f(x)=\frac{2 x}{3 x-1}$

Answer. Domain is $\left(-\infty, \frac{1}{3}\right) \cup\left(\frac{1}{3}, \infty\right)$. Range is $\left(-\infty, \frac{2}{3}\right) \cup\left(\frac{2}{3}, \infty\right)$. The inverse function is $f^{-1}(x)=\frac{x}{3 x-2}$.
(c) $k(x)=2 x^{2}-4 x+9$, with domain $(-\infty, 1]$

Answer. Domain is $(-\infty, 1]$. Range is $[7, \infty)$. The inverse is $k^{-1}(x)=\frac{2-\sqrt{2 x-14}}{2}$
(d) $f(x)=-x^{2}+6 x-8$, with domain $[3, \infty)$

Answer. Domain is $[3, \infty)$. Range is $(-\infty, 1]$. Inverse is $f^{-1}(x)=3+\sqrt{1-x}$
(e) $h(x)=2^{4 x-5}$

Proof. Domain is \mathbb{R}. Range is $(0, \infty)$. Inverse is $h^{-1}(x)=\frac{\log _{2} x+5}{4}$
(f) $g(x)=\ln (5 x-2)+3$

Answer. Domain is $\left(\frac{2}{5}, \infty\right)$. Range is \mathbb{R}. Inverse is $g^{-1}(x)=\frac{e^{x-3}+2}{5}$.
4. Solve:
(a) $x^{4}-x^{3}-7 x^{2}+x+6=0 \quad x=-2, \quad x=-1, \quad x=1, \quad x=3$
(b) $x^{4}-3 x^{3}+3 x^{2}+12 x-28=0 \quad x=-2, \quad x=2, \quad x=\frac{3+i \sqrt{19}}{2}, \quad x=\frac{3-i \sqrt{19}}{2}$
(c) $x^{3}-6 x^{2}+11 x-6 \geq 0 \quad[1,2] \cup[3, \infty)$
5. Solve each of the following equations:
(a) $e^{2 x}-3 e^{x}+2=0 \quad x=\ln 1, \quad x=\ln 2$
(b) $2^{4 x}-10 \cdot 2^{2 x}+9=0 \quad x=0, \quad x=\log _{2} 3$
(c) $\log _{3}(x-1)+\log _{3}(x+2)=1 \quad x=\frac{\sqrt{21}-1}{2}$
6. Solve the following equations. You should give all solutions.
(a) $\cos ^{2} x-\cos x=0$

Answer. Three families of solutions: $x=2 k \pi, x=\frac{\pi}{2}+2 k \pi, x=-\frac{\pi}{2}+2 k \pi$, where in each formula k is an arbitrary integer.
(b) $2 \sin ^{2} x-\sin x-1=0$

Answer. Three families of solutions: $x=\frac{\pi}{2}+2 k \pi, x=-\frac{\pi}{6}+2 k \pi, x=\frac{7 \pi}{6}+2 k \pi$, where in each formula k is an arbitrary integer.
(c) $\cos 3 x=\frac{\sqrt{3}}{2}$

Answer. Two families of solution $x=\frac{12 k \pi \pm \pi}{18}$, where k is an arbitrary integer.
(d) $4 \sin ^{4} x+4 \sin ^{3} x-\sin ^{2} x-\sin x=0$

Answer. $x=2 k \pi, x=2 k \pi+\pi, x=\frac{\pi}{2}+2 k \pi, x=\frac{\pi}{4}+2 k \pi, x=-\frac{\pi}{4}+2 k \pi, x=\frac{5 \pi}{4}+2 k \pi$, $x=\frac{3 \pi}{4}+2 k \pi$, where in each formula k stands for an arbitrary integer.
7. For each of the sinusoidal curves in Figures 1 and 2 find an equation of the form:
(a) $A \sin (B x+C)$ with $A>0$
(b) $A \sin (B x+C)$ with $A<0$
(c) $A \cos (B x+C)$ with $A>0$
(d) $A \cos (B x+C)$ with $A<0$

Figure 1: A sinusoidal curve
Answer. The curve in Figure 1 has equations:

1. $y=2 \sin \left(2 x+\frac{\pi}{3}\right)$
2. $y=-2 \sin \left(2 x-\frac{2 \pi}{3}\right)$
3. $y=2 \cos \left(2 x-\frac{\pi}{6}\right)$
4. $y=-2 \cos \left(2 x+\frac{5 \pi}{6}\right)$

The curve in Figure 2 has equations:

1. $y=3 \sin \left(2 x-\frac{\pi}{6}\right)$
2. $y=-3 \sin \left(2 x+\frac{5 \pi}{6}\right)$
3. $y=2 \cos \left(2 x-\frac{2 \pi}{3}\right)$
4. $y=-2 \cos \left(2 x+\frac{\pi}{3}\right)$

Figure 2: Another sinusoidal curve

