PARABOLAS, LINES AND PARABOLAS

NIKOS APOSTOLAKIS

Define the parabola as the locus of points that they are equidistant from a line (the directrix) and a point (the focus).
Define the vertex of the parabola as the midpoint of the segment perpendicular to the directrix starting at the focus.
Examples:
(1) Find the equation of the parabola with directrix $l: y=-2$ and focus at $F:(0,2)$.

Solution. Let (x, y) be any point. Then the distance from l is $|y+2|$ while the distance for F is $\sqrt{x^{2}+(y-2)^{2}}$. So a point with coordinates (x, y) is in the parabola, if and only if, the following equation holds:

$$
\sqrt{x^{2}+(y-2)^{2}}=|y+2|
$$

To get the equation in a simpler form lets square both sides:

$$
x^{2}+(y-2)^{2}=(y+2)^{2}
$$

Let us expand:

$$
x^{2}+y^{2}-4 y+4=y^{2}+4 y+4
$$

Which upon transfering everything to the LHS becomes:

$$
x^{2}-8 y=0
$$

Finally, solving for y gives us the more familiar form:

$$
y=\frac{x^{2}}{8}
$$

[^0]
(2) How about the parabola $y=x^{2}$? It turns out that this has focus $\left(0, \frac{1}{4}\right)$ and directrix $y=\frac{1}{4}$.
(3) Find the equation of the parabola with focus $(0,-1)$ and directrix $y=1$.

Solution. We must have:

$$
\sqrt{x^{2}+(y+1)^{2}}=|y-1|
$$

We square both sides:

$$
x^{2}+(y+1)^{2}=|y-1|^{2}
$$

Now we expand:

$$
x^{2}+y^{2}+2 y+1=y^{2}-2 y+1
$$

After transfering everything to the LHS and simplifying we get:

$$
x^{2}+4 y=0
$$

And finally solving for y we get:

$$
y=-\frac{x^{2}}{4}
$$

(4) Find the equation of the parabola with focus $F:(0, q)$ and directrix $y=c$.

Solution. The point (x, y) has to satisfy:

$$
x^{2}+(y-q)^{2}=(y-c)^{2}
$$

After expanding we get:

$$
x^{2}+y^{2}-2 q y+q^{2}=y^{2}-2 c y+c^{2}
$$

Which after the usual simplifications gives:

$$
x^{2}+2 c y-2 q y+q^{2}-c^{2}=0
$$

Or after collectng terms with y :

$$
x^{2}+2(c-q) y+q^{2}-c^{2}=0
$$

Solving for y gives:

$$
y=-\frac{x^{2}+q^{2}-c^{2}}{2(c-q)}
$$

We further simplify this as follows:

$$
y=\frac{x^{2}}{2(q-c)}+\frac{q^{2}-c^{2}}{2(q-c)}
$$

So finally we get:

$$
y=\frac{x^{2}}{2(q-c)}+\frac{q+c}{2}
$$

(5) Find the equation of the parabola with focus $F:(p, q)$ and directrix $l: y=c$.

Solution. A point in this parabola will have to satisfy the equation:

$$
\sqrt{(x-p)^{2}+(y-q)^{2}}=|y-c|
$$

After squaring both sides, expanding, and solving for y we get:

$$
y=\frac{x^{2}-2 p x+p^{2}+q^{2}-c^{2}}{2 q-2 c}
$$

We can further write the RHS of the equation as follows:

$$
\begin{aligned}
\frac{x^{2}-2 p x+p^{2}+q^{2}-c^{2}}{2 q-2 c} & =\frac{x^{2}-2 p x+p^{2}}{2(q-c)}+\frac{q^{2}-c^{2}}{2(q-c)} \\
& =\frac{(x-p)^{2}}{2(q-c)}+\frac{(q-c)(q+c)}{2(q-c)} \\
& =\frac{(x-p)^{2}}{2 q-2 c}+\frac{q+c}{2}
\end{aligned}
$$

So that the equation of the parabola is:

$$
y=\frac{(x-p)^{2}}{2 q-2 c}+\frac{q+c}{2}
$$

From this form of the equation we can see that the vertex is at ($p, \frac{q+c}{2}$), as expected.
(6) Find the equation of the parabola with focus $(1,0)$ and directrix $x=-1$.
(7) Find the equation of the parabola with focus $(1,2)$ and directrix $y=2 x+1$

Answer.

$$
x^{2}+4 y^{2}+4 x y-14 x-18 y+24=0
$$

Proposition: The equation $y=a x^{2}$ describes a parabola with

- focus $\left(0, \frac{1}{4 a}\right)$, directrix $y=-\frac{1}{4 a}$, and vertex at $(0,0)$, if $a>0$.
- focus $\left(0,-\frac{1}{4 a}\right)$, directrix $y=\frac{1}{4 a}$, and vertex at $(0,0)$, if $a<0$.

Examples:

(1) Find a line that touches the parabola $y=x^{2}$ at the point $(1,1)$.

Solution. The equation of a non-vertical line that passes through $(1,1)$ is $y=m x-m+1$. At a common point of this line with the parabola we have:

$$
x^{2}=m x-m+1
$$

or equivalently

$$
x^{2}-m x+m-1=0
$$

Now the discriminant of this quadratic equation is

$$
(-m)^{2}-4 \cdot 1 \cdot(m-1)=m^{2}-4 m+4=(m-2)^{2}
$$

In order for the quadratic equation to have only one (double) solution we need the disciminant to be 0 . This happens exactly when $m=2$. So there is only one common point when $m=2$. In that case the line has equation:

$$
y=2 x-1
$$

(2) Find a line that touches the parabola $y=x^{2}$ at the point $(3,9)$.

Solution. An non-vertical line passing through $(3,9)$ has equation $y=m x-3 m+9$, for some m. To find common points with the parabola we have to solve the equation:

$$
x^{2}-m x+3 m-9=0
$$

The discriminant of this equation is

$$
m^{2}-4(3 m-9)=m^{2}-12 m-36=(m-6)^{2}
$$

So the discriminant is 0 when $m=6$, and the equation of the tangent line is

$$
y=6 x-9
$$

(3) In general the tangent at the point $\left(p, p^{2}\right)$ will have slope $2 p$.

Proof. In general, a line that passes through $\left(p, p^{2}\right)$ has equation $y=m x-p m+p^{2}$. The common points of such a line with the parabola $y=x^{2}$ have x-coordinates that satisfy the equation:

$$
x^{2}-m x+p m-p^{2}=0
$$

The discriminant of this equation is

$$
m^{2}-4 p m-4 p^{2}=(m-2 p)^{2}
$$

So there is a double solution exactly when $m=2 p$. The tangent line is

$$
y=2 p x-p^{2}
$$

Exercise Extra Credit: Consider the parabola: $y=-2 x^{2}$.
(1) Find the tangent at the point $(1,-2)$.
(2) Find the tangent at the point $(-1,-2)$
(3) What is the slope at the tangent $\left(p,-2 p^{2}\right)$?

Completing the square: Find the focus, directrix, vertex and axis of symmetry of the following parabolas:
(1) $y=x^{2}-6 x+8$
(2) $y+x^{2}-4 x+9=0$
(3) $x-y^{2}-2 y+2=0$

[^0]: Date: 31 January 2010.

