Exercises.

(1) Which of the following functions are one-to-one?
(a) $f(x)=42$
(b) $g(x)=-2 x+5$
(c) $h(x)=x^{2}-3$
(d) $f(x)=x^{2}+1$ with domain $[0, \infty)$.
(e) $g(x)=x^{3}$
(f) $h(x)=x^{3}-8$
(g) $g(x)=\sqrt{x+1}$
(h) $f(x)=\sqrt{1-x^{2}}$
(i) $f(x)=(x-2)^{3}$
(j) $h(x)=\frac{3}{2 x-4}$
(k) $g(x)=\frac{3 x+6}{x+1}$
(l) $f(x)=\frac{2 x-3}{5 x-2}$
(m) $f(x)=x^{2}-3 x+2$
(n) $g(x)=x^{2}+2 x+4$
(o) $h(x)=\sin x$
(p) $f(x)=2^{x+1}$
(q) $g(x)=\log _{2}(x-1)$
(r) Extra Credit $f(x)=(x-1)(x-2)(x-3)$.
(2) For each of the functions of the above exercise

- if the function is one-to-one find the inverse function.
- if the function is not one-to-one then find a maximal interval so that restricting the function to that interval makes it one-to-one.
(3) Give an example of a relation that is not a function but its inverse is a function.
(4) Prove that if a function is one-to-one then its inverse function is also one-to-one.
(5) A function is called even, if the following two conditions are satisfied:
- The domain of the function is "symmetric around 0 ", that is if a number a is in the domain then $-a$ is also in the domain.
- For all a in the domain, $f(a)=f(-a)$.

Can you give an example of an even function that is one-to-one?
(6) A function is called odd, if the following two conditions are satisfied:

- The domain of the function is "symmetric around 0 ", that is if a number a is in the domain then $-a$ is also in the domain.
- For all a in the domain, $f(a)=-f(-a)$.

Can you give an example of an odd function that is one-to-one?

