Exercises.

(1) Verify that the following are pairs of inverse functions:

(a)
$$f(x) = 3x - \frac{1}{2}$$
, $g(x) = \frac{2y+1}{6}$
(b) $f(x) = \sqrt[3]{x+5}$, $g(x) = x^3 - 5$
(c) $g(x) = \frac{3x-2}{2x+3}$, $h(x) = -\frac{3x+2}{2y-3}$

(b)
$$f(x) = \sqrt[3]{x+5}$$
, $g(x) = x^3 - 5$

(c)
$$g(x) = \frac{3x-2}{2x+3}$$
, $h(x) = -\frac{3x+2}{2y-3}$

(d)
$$h(x) = x^2 - 3$$
 with domain $[0, \infty), g(x) = \sqrt{x+3}$

(d)
$$h(x) = x^2 - 3$$
 with domain $[0, \infty)$, $g(x) = \sqrt{x+3}$
(e) $f(x) = 2 - \sqrt{x+7}$, $h(x) = x^2 - 4x - 3$ with domain $(-\infty, 2]$

(f)
$$f(x) = \log_{10}(3x - 5), g(x) = \frac{10^x + 5}{3}$$

- (2) Are the functions $f(x) = x^2$ and $g(x) = \sqrt{x}$ inverses?
- (3) A function is called an *involution* if it is its own inverse. In other words, a function f is an involution if for all x in the domain of f, we have that $(f \circ f)(x) = x$. Show that the following functions are involutions:

(a)
$$f(x) = \frac{1}{x}$$

(a)
$$f(x) = \frac{1}{x}$$

(b) $g(x) = \sqrt{16 - x^2}$ with domain $[0, 4]$
(c) $f(x) = \frac{2x - 3}{4x - 2}$

(c)
$$f(x) = \frac{2x-3}{4x-2}$$

- (4) Extra Credit Is the function $f(x) = \sqrt{16 x^2}$ with domain [-4, 0] an involution? Justify your answer.
- (5) Extra Credit Is it possible to restrict the domain of the function f(x) = 42 so that it becomes an involution?
- (6) For the following pair of functions determine the compositions $f \circ q$ and $q \circ f$. In each case you should give the domain as well as the formula.

(a)
$$f(x) = 3x - 1$$
, $g(x) = 2x + 3$

(b)
$$f(x) = x - 2$$
, $g(x) = 5x^2 - 2$

(c)
$$f(x) = x^2 - 3x + 5$$
, $g(x) = 2x - 3$

(d)
$$f(x) = -2x^2 + x - 4$$
, $g(\underline{x}) = x^2 + 1$

(e)
$$f(x) = x^2 - 4$$
, $g(x) = \sqrt{x+3}$

(c)
$$f(x) = x^2 - 3x + 3$$
, $g(x) = 2x - 3$
(d) $f(x) = -2x^2 + x - 4$, $g(x) = x^2 + 1$
(e) $f(x) = x^2 - 4$, $g(x) = \sqrt{x+3}$
(f) $f(x) = \frac{2x-1}{5x+3}$, $g(x) = \frac{x+2}{x+1}$

(g)
$$f(x) = \sqrt{x-3}$$
, $g(x) = 3-x$

(g)
$$f(x) = \sqrt{x-3}$$
, $g(x) = 3-x$
(h) $f(x) = \frac{2x}{x^2-4}$, $g(x) = \frac{1}{x}-2$

(i)
$$f(x) = x^2 + 4$$
, $g(x) = \sqrt{3-x}$
(j) $f(x) = x$, $g(x) = 2^{\sin x}$

(j)
$$f(x) = x, g(x) = 2^{\sin x}$$

$$(k) f(x) = -x, g(x) = \sqrt{x}$$

(1)
$$f(x) = 3$$
, $g(x) = x^2 - 5x + 5$

(b)
$$f(x) = x$$
, $g(x) = 2$
(k) $f(x) = -x$, $g(x) = \sqrt{x}$
(l) $f(x) = 3$, $g(x) = x^2 - 5x + 5$
(m) $f(x) = x^2 + 3x - 7$, $g(x) = \sqrt{x - 1} + 1$
(n) $f(x) = \cos 3x$, $g(x) = x^2 - 1$

(n)
$$f(x) = \cos 3x$$
, $g(x) = x^2 - 1$

(o)
$$f(x) = \log_2 x, \ g(x) = -\sqrt{x+3}$$

- (7) If f(0) = -4 and g(-4) = 6 what is $(g \circ f)(0)$?
- (8) The graph of the functions f and g are shown in Figure 1. Find the following values:

1

(a)
$$(f \circ g)(0)$$

(b)
$$(f \circ g)(-2)$$

(c)
$$(g \circ f)(1)$$

(d)
$$(g \circ f)(-1)$$

(e)
$$(g \circ f)(-4)$$

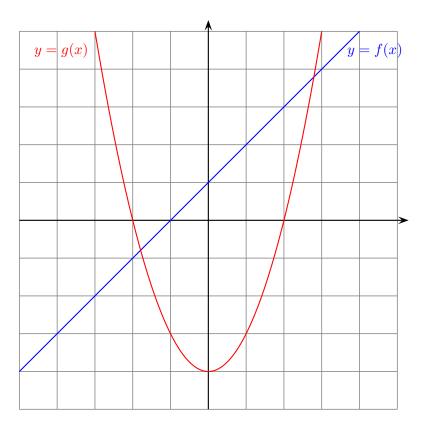


FIGURE 1. Two functions

- (9) Let l(x) = x + 3. For each of the following functions f,
- Let $\iota(x) = x + 3$. For each of the following functions f,

 find $f \circ l$, $l \circ f$ graph y = f(x), $y = (f \circ l)(x)$, $(l \circ f)(x)$ on the same grid.

 (a) $f(x) = x^2$ (b) $f(x) = -x^2$ (c) $f(x) = x^3$ (d) $f(x) = \frac{1}{2}$

 - $(d) \ f(x) = |x|$
- (10) Repeat the previous exercise with l(x) = x 2