Fifth Quiz for CSI35

Nikos Apostolakis

Directions: This quiz is due Thursday April 23, at 6:00 PM. Please make sure to justify all your answers. No credit will be given for unjustified answers.

1. How many equivalence relations are there on the sete $\{1,2,3,4\}$? Provide an explicit list.
2. How many equivalence relations are there on a set with five elements?
3. Consider the standard linear order on \mathbb{R}. Which of the following sets has minimum, maximum, lower bound, upper bound?
(a) $(0, \infty)$
(b) $[-3,5)$
(c) $(-\infty, 6)$
(d) $\left\{x \in \mathbb{R}: x^{2}<2\right\}$
(e) $\left\{x \in \mathbb{R}: x^{3}>2\right\}$
4. Consider the poset $(\mathcal{P}(A), \subseteq)$ where $A=0,1,2,3$. Is there a minimum element? Is there a maximum element?
5. Consider the poset (\mathcal{S}, \subseteq) where \mathcal{S} is the set of non empty proper subsets of $\{0,1,2,3\}$. Does \mathcal{S} have minimum or maximum elements? How about minimal or maximal elements?

6 . Let (P, \preceq) be a poset that has only one minimal element m. Is m necessarily minimum? If your answer is affirmative then you should prove it, if it is negative then you should provide a counterexample.
7. Let $A=\mathbb{N} \backslash\{0,1\}$ and consider the poset (A, \mid), where \mid is the divisibility relation. If $B=\{6,15\}$
(a) find all lower bounds of B. Is there a largest lower bound?
(b) find all lower bounds of B. Is there a least upper bound?
8. Extra Credit: On a 3×4 chessboard there are three white knights on the top row and three black knights on the bottom row, as shown in the following picture. Using only legal moves, interchange the

W	W	W
B	B	B

black and white knights in as few moves as you can.

