Fourth Quiz for CSI35

Nikos Apostolakis

March 25, 2009

Directions: This quiz is due Thursday March 26, at 6:00 PM.

1. Consider the relation R whose bipartite digraph is shown below

- (a) Find the digraph of R.
- (b) Write R as a set of ordered pairs.
- (c) Determine whether R is reflexive, symmetric antisymmetric, or transitve.
- (d) Find $R \circ R$.
- 2. Let R be the "auntle" relation on the set of all humans: $(a, b) \in R$ if and only if, a is an aunt or an uncle of b (in other words R is the composition $S \circ P$ where P is the "parent relation" and S is the "sibling" relation). What are the compositions $P \circ R$ and $R \circ P$?

3. Let $A = \{0, 1\}$.

- (a) How many relations are there on A? List all of them.
- (b) Which of the relations you listed in par (a) are reflexive? Which are symmetric? Which are antisymmetric? Which are transitive?
- 4. Consider the relations R, and S on the set $\{1, 2, 3, 4\}$ represented by the digraphs:

- (a) Find the matrices M_S and M_R of M and S respectively.
- (b) Use these matrices to compute the compositions $R \circ S$ and $S \circ R$.
- (c) Draw the digraphs that represent $R \circ S$ and $S \circ R$.
- 5. Let R be a relation on A. Is it possible R to be a function and reflexive? If yes give an example, if no explain why not.
- 6. Which of the following relations defined on the set of all people are equivalence relations. Justify your answers:
 - (a) $(a, b) \in R$ iff a has the same parents as b.
 - (b) $(a,b) \in R$ iff a is parent of b.
 - (c) $(a, b) \in R$ iff a lives in the same town as b.
 - (d) $(a, b) \in R$ iff a lives one floor above b.
 - (e) $(a,b) \in R$ iff a is an acquaintance of b.
- 7. Consider the following relation on \mathbb{R} , the set of reall numbers

$$(a,b) \in R \iff |a| = |b|$$

Prove that R is an equivalence relation.

8. Consider the relation R defined on the set of all positive real numbers as follows:

$$(a,b) \in R \quad \text{iff} \quad \frac{a}{b} \in \mathbb{Q},$$

where \mathbb{Q} stands for the set of rational numbers. Prove that R is an equivalence relation.

9. Let Δ_n be the set of all diagonal $n \times n$ matrices with real elements, i.e. a matrix $A = (a_{ij})$ is in Δ_n iff and only if, $\forall i, j \quad i \neq j \Longrightarrow a_{ij} = 0$. Consider the relation R defined on the set M_n of all $n \times n$ matrices by

$$(A, B) \in R \iff A - B \in \Delta_n$$

- (a) Prove that R is an equivalence relation.
- (b) What is the equivalence class of the identity matrix I_n ?

10. Consider the relation defined on the set of ordered pairs of natural numbers (i.e. on the set $\mathbb{N} \times \mathbb{N}$) as follows:

$$((m,n),(k,l)) \in R \iff m+l=k+n$$

- (a) Prove that R is an equivalence relation.
- (b) Find the equivalence class of (5, 6).
- 11. How many equivalence relations are there on the set $\{1, 2, 3, 4, 5\}$?