Second Quiz for CSI35

Nikos Apostolakis

February 27, 2009

Directions: This quiz is due Thursday March 5, at 6:00 PM.

1. For an integer n let g_{n} be the number of ways that n can be written as a sum of ones and twos, where the order that the summands are written is important. For example, $g(1)=1, g(2)=2$ since 2 can be written either as 2 or as $1+1$, and $g(3)=3$ because 3 can be written as $1+1+1$ or as $1+2$ or as $2+1$.
(a) Find a recursive definition of $g(n)$
(b) Prove that this recursive definition is correct.

For the next three questions f_{n} stands for the nth Fibonacci number.
2. Prove that for all $n \geq 1$ we have:

$$
f_{1}^{2}+f_{2}^{2}+\cdots f_{n}^{2}=f_{n} f_{n+1}
$$

3. Let $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$. Prove that for all $n \geq 1, A^{n}=\left(\begin{array}{cc}f_{n+1} & f_{n} \\ f_{n} & f_{n-1}\end{array}\right)$.
4. Let $\varphi=\frac{1+\sqrt{5}}{2}, \bar{\varphi}=\frac{1-\sqrt{5}}{2}$.
(a) Prove that $\forall n \in \mathbb{N} \quad \varphi^{n}=f_{n-1}+f_{n} \varphi$ and $\bar{\varphi}^{n}=f_{n-1}+f_{n} \bar{\varphi}$.
(b) Prove that

$$
\forall n \in \mathbb{N} \quad f_{n}=\frac{\varphi^{n}-\bar{\varphi}^{n}}{\sqrt{5}}
$$

For the next four questions recall that if $\Sigma=\{0,1\}$ then the elements of Σ^{*}, i.e. the words on the alphabet Σ, are called bit strings.
5. How many bit strings of length n are there, where n is any natural number? Prove your answer.
6. For a bit string s , let $O(s)$ and $I(s)$ be number of zeroes and ones, respectively, that occur in s. So for example if $s=01001$, then $O(s)=3$ and $I(s)=2$.
(a) Give recursive definitions of $O(s)$ and $I(s)$.
(b) If $l(s)$ stands for the length of s, prove that:

$$
l(s)=O(s)+I(s)
$$

7. The reverse of a string s is the string obtained by "reading s backwards", for example the reverse of the string "sub" is "bus". The reverse of a string s is denoted by s^{R}. Give a recursive definition of s^{R}, for bit strings s.
8. A palindrome is a string s such that $s^{R}=s$, in other words a string that reads the same when we read it backwards. For example the string "bob" is a palindrome.
(a) Give a recursive definition of the set Π of all bit strings that are palindromes.
(b) For a natural number n, how many bit string palindromes of length n are there? Prove your answer.
9. The set of binary trees, is recursively defined as follows:

- There is a a binary tree consisting of a single vertex r. The root of this tree is r.
- If T_{1} and T_{2} are two binary trees with roots r_{1} and r_{2} respectively, we can make a new binary tree by adding one new vertex r and two new edges connecting r to r_{1} and r_{2}. The root of this new tree is r.
- All binary trees are constructed this way

For a binary tree, T let $v(T)$ and $e(T)$ denote the number of vertices and edges of T respectively.
(a) Give recursive definitions of $v(T)$ and $e(T)$.
(b) Prove that for all binary trees:

$$
v(T)-e(T)=1
$$

10. Extra Credit: Give a recursive definition for $R(n)$ the number of rooted trees with n vertices.
