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1. Let n be a positive integer. Prove that:
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2. For an integer n let g(n) be the number of ways that n can be written as a sum of ones,
twos, and threes, where the order that the summands are written is important. For example,
g(1) = 1, g(2) = 2 since 2 can be written either as 2 or as 1 + 1, and g(3) = 4 because 3 can be
written as 1 + 1 + 1 or as 1 + 2 or as 2 + 1 or as 3.

(a) Find a recursive definition of g(n)

(b) Prove that this recursive definition is correct.

3. This question is about the Tower of Hanoi puzzle. The puzzle consists of three pegs and six
disks, initially stacked in decreasing size on one of the pegs, say A, as shown in Figure 1.
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Figure 1: The Towers of Hanoi puzzle

The goal is to transfer the whole tower of six disks to one of the other pegs, say C, moving
only one disk at a time and never moving a larger one on top of a smaller.

(a) Prove that this puzzle has a solution for any number of initial disks.

(b) Prove that the puzzle with n disks can be solved in 2n − 1 moves.

(c) Prove that the puzzle with n disks cannot be solved in fewer than 2n − 1 moves.
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4. Let N
∗ be the set of positive integers. The relation ∼ on N

∗ is defined as follows:

m ∼ n ⇐⇒ ∃k ∈ N
∗ mn = k2

(a) Prove that ∼ is an equivalence relation.

(b) Find the equivalence classes of 2, 4, and 6.

5. If the relation ∼ of Question 4 was defined on N instead of N
∗ would it still be an equivalence

relation? Prove your answer.

6. Consider the poset (P({1, 2, 3, 4, 5}),⊆).

(a) Draw the Hasse diagram of this poset.

(b) Find the greatest lower bound and the least upper bound of the set {{2, 3}, {3, 4, 5}} if
they exist.

7. Can you find a graph with six vertices and degrees 1, 2, 3, 4, 5, 6?

8. For a natural number n let Qn denote the n-cube graph.

(a) How many vertices and how many edges does Qn have? Prove your answers.

(b) Prove that Qn is bipartite.

9. Are the two graphs in Figure 2 isomorphic? How about the graphs in Figure 3? Prove your
answers.

b

b

b b

b

b

b

b b

b

b

bb

b

b b

b

b

b b

Figure 2: The first two graphs of Question 9

10. Count von Diamond has been murdered in his estate. The internationally known detective
(and part time graph theorist) Inspector Clouseau has been called in to investigate. The butler
claims that he saw the gardener enter the pool room (where the murder took place) and then,
shortly after, leave that room by the same door. On the other hand, the gardener says that he
cannot be the man that the butler saw because he entered the house, went through each door
exactly once and then left the house. Inspector Clouseau checks the floor plan (see Figure 4)
and within minutes declares the case solved. Who done it?
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Figure 3: The last two graphs of Question 9

Pool Room

Figure 4: The floor of Von Diamond Estate
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Figure 5: The graphs of Question 12
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11. For which values of n does the complete graph Kn have an Euler circuit?

12. Prove that the two graphs in Figure 5 are isomorphic.

13. Prove that the graph in the right side of Figure 5 is not Hamiltonian.

14. Prove that the 4 × 4 chessboard does not admit a knight’s tour.

15. List all possible trees with six or less vertices.

16. Extra Credit Find a knight’s tour on an 8 × 8 chessboard.

Hint. There are many knight’s tours on the standard chessboard. One way to proceed (invented
by our old acquaintance Leonard Euler) is to first find an open knight’s tour on a 4 × 8 board
that starts and ends at the top row; to find a knight’s tour on the 8 × 8 board then you just
“glue” that open tour and its mirror image.
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