Midterm exam for CSI35

Nikos Apostolakis

March 30, 2009

1. The Fina Bocci company breeds worms for fishing. After each worm is two weeks old they cut off its tail which becomes a new worm. The tail grows back in a week, so once a worm becomes two weeks old it produces a new worm every week.
(a) Assuming that no worm ever dies and that the company starts with one newly "born" worm, find a recursive formula for the the number of worms after n weeks.
(b) Prove that the formula you found in part a) is correct.
2. Let f_{n} denote the n-th Fibonacci number where n is a natural number. Show that for all $n \in \mathbb{N}$

$$
f_{n-1} f_{n+1}-f_{n}^{2}=(-1)^{n}
$$

3. Recall that a palindrome is a string that equals its reverse, in other words a string that reads the same when read backwards. Find a formula for the number of palindromes of length n that can be constructed using only letters from the alphabet $\{a, b, c\}$.
4. Prove that for all natural numbers $n \geq 1$:

$$
1^{3}+2^{3}+\cdots n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}
$$

5. Alice and Bob play the following game: they take turns removing 1 to 5 stones from a pile of initial size n. The first person who cannot play because there are no stones to take, loses the game. Alice always plays first.
(a) Prove that if n is a multiple of 6 then Bob has a winning strategy.
(b) Prove that if n is not a multiple of 6 then Alice has a winning strategy.
6. In Nevereverland they have only stamps worth 5 or 7 cents. Prove that a nevereverlander can send any letter that costs 24 cents or more.
7. Consider the following zero-one matrix:

$$
A=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right)
$$

Prove that $A^{n}=A$ for all natural numbers $n \geq 1$, where the power is with respect to the boolean product.
8. Consider the digraphs G_{1} and G_{2} shown bellow:

Draw the digraph $G_{1} \circ G_{2}$.
Hint. Consider the corresponding boolean matrices.
9. Prove that

$$
R=\left\{(a, b) \mid a^{4}=b^{4}\right\}
$$

is an equivalence relation on \mathbb{R} and find the equivalence class of -4 .
10. Consider the following relation on the set $\mathbb{Z} \times \mathbb{Z}^{*}$, where \mathbb{Z}^{*} denotes the set of non-zero integers:

$$
((m, n),(k, l)) \in R \Longleftrightarrow m l=k n
$$

(a) Prove that R is an equivalence relation.
(b) Find the equivalence class of $(2,4)$.
11. After Alice and Bob finished playing the game in Problem 5 they decided to study for the Discrete Mathematics exam that was coming up. After a while they had the following conversation:
A: I was looking at the definition of an equivalence relation and it seems redundant.
B: How so?
A: Well, it says that an equivalence relation is a relation that is reflexive, symmetric and transitive. Now that's redundant, because I can prove that if a relation is symmetric and transitive then it is reflexive as well. So to be economical we should define an equivalence relation to be a relation that is symmetric and transitive. No need to check for reflexivity, really.
B: Hm, this sound fishy to me. Somebody would've noticed before. Let me see your proof.
A: It's very simple really: Let R be a symmetric and transitive relation on a set A. To prove that it is reflexive I need to prove that for all $x \in A$ we have $(x, x) \in R$. So let $x \in R$, chose any $y \in A$ such that $(x, y) \in R$. Then since R is symmetric we have $(y, x) \in R$ also. So we have $(x, y) \in R$ and $(y, x) \in R$, so since R is transitive we conclude that $(x, x) \in R$. So, R is reflexive.
Bob is thoughtful for a while.
B: Hm, your proof seems valid... Still, I find it hard to believe that nobody had noticed this before. Let me think some more.

Bob thinks some more.
B: Ok, your proof must be wrong because I can produce a counter example. Remember the matrix in exercise 7:

$$
\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right)
$$

This matrix is symmetric and transitive, but not reflexive.
A: (after some thought) Yep, you're right. Still though I can't figure out where is the gap in my proof.

B: Me neither ...
(a) Prove that Bob's counter-example really works.
(b) Can you find the fault in Alice's proof?

