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1. The Fina Bocci company breeds worms for fishing. After each worm is two weeks old they cut
off its tail which becomes a new worm. The tail grows back in a week, so once a worm becomes
two weeks old it produces a new worm every week.

(a) Assuming that no worm ever dies and that the company starts with one newly “born”
worm, find a recursive formula for the the number of worms after n weeks.

(b) Prove that the formula you found in part a) is correct.

2. Let fn denote the n-th Fibonacci number where n is a natural number. Show that for all n ∈ N

fn−1fn+1 − f2
n

= (−1)n

3. Recall that a palindrome is a string that equals its reverse, in other words a string that reads
the same when read backwards. Find a formula for the number of palindromes of length n that
can be constructed using only letters from the alphabet {a, b, c}.

4. Prove that for all natural numbers n ≥ 1:

13 + 23 + · · ·n3 =

(

n(n + 1)

2

)2

5. Alice and Bob play the following game: they take turns removing 1 to 5 stones from a pile of
initial size n. The first person who cannot play because there are no stones to take, loses the
game. Alice always plays first.

(a) Prove that if n is a multiple of 6 then Bob has a winning strategy.

(b) Prove that if n is not a multiple of 6 then Alice has a winning strategy.

6. In Nevereverland they have only stamps worth 5 or 7 cents. Prove that a nevereverlander can
send any letter that costs 24 cents or more.

7. Consider the following zero-one matrix:

A =









0 0 0 0
0 1 1 1
0 1 1 1
0 1 1 1









Prove that An = A for all natural numbers n ≥ 1, where the power is with respect to the
boolean product.
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8. Consider the digraphs G1 and G2 shown bellow:
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G2

Draw the digraph G1 ◦ G2.

Hint. Consider the corresponding boolean matrices.

9. Prove that
R = {(a, b)|a4 = b4}

is an equivalence relation on R and find the equivalence class of −4.

10. Consider the following relation on the set Z×Z
∗, where Z

∗ denotes the set of non-zero integers:

((m, n), (k, l)) ∈ R ⇐⇒ ml = kn

(a) Prove that R is an equivalence relation.

(b) Find the equivalence class of (2, 4).

11. After Alice and Bob finished playing the game in Problem 5 they decided to study for the
Discrete Mathematics exam that was coming up. After a while they had the following conver-
sation:

A: I was looking at the definition of an equivalence relation and it seems redundant.

B: How so?

A: Well, it says that an equivalence relation is a relation that is reflexive, symmetric and
transitive. Now that’s redundant, because I can prove that if a relation is symmetric and
transitive then it is reflexive as well. So to be economical we should define an equivalence
relation to be a relation that is symmetric and transitive. No need to check for reflexivity,
really.

B: Hm, this sound fishy to me. Somebody would’ve noticed before. Let me see your proof.

A: It’s very simple really: Let R be a symmetric and transitive relation on a set A. To prove
that it is reflexive I need to prove that for all x ∈ A we have (x, x) ∈ R. So let x ∈ R, chose
any y ∈ A such that (x, y) ∈ R. Then since R is symmetric we have (y, x) ∈ R also. So we
have (x, y) ∈ R and (y, x) ∈ R , so since R is transitive we conclude that (x, x) ∈ R. So, R is
reflexive.

Bob is thoughtful for a while.

B: Hm, your proof seems valid. . . Still, I find it hard to believe that nobody had noticed this
before. Let me think some more.
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Bob thinks some more.

B: Ok, your proof must be wrong because I can produce a counter example. Remember the
matrix in exercise 7:









0 0 0 0
0 1 1 1
0 1 1 1
0 1 1 1









This matrix is symmetric and transitive, but not reflexive.

A: (after some thought) Yep, you’re right. Still though I can’t figure out where is the gap in
my proof.

B: Me neither . . .

(a) Prove that Bob’s counter-example really works.

(b) Can you find the fault in Alice’s proof?

Page 3


