Fifth Quiz for Math 30, section 6432

Directions: You should fully justify your answers. Do all your work on separate paper, and make sure to print your name in the first sheet and staple all the sheets together. Unstapled, loose pieces of paper will not be graded. This quiz is due Wednesday April 2, at 6:00 PM.

1. Use Descartes's rule of signs to determine the possible number of positive and negative zeros of the following polynomials:
(a) $x^{3}+2 x^{2}+3 x+4$
(b) $3 x^{4}-3 x^{3}+2 x^{2}+4 x+7$
(c) $-5 x^{5}-4 x^{4}+3 x^{3}+2 x^{2}+x+23$
(d) $-5 x^{5}+x^{4}-3 x^{3}-10 x^{2}+29 x-32$
2. Prove that the following polynomial has at least two non-real roots:

$$
2 x^{7}-11 x^{6}-71 x^{5}+450 x^{4}+1740 x^{3}+1189 x^{2}+728
$$

3. For each of the following rational functions find the domain, possible x and y intercepts as well as all possible asymptotes.
(a) $f(x)=\frac{2 x+2}{x^{2}-3 x-4}$
(b) $f(x)=\frac{x^{2}+x-6}{x^{3}+3 x^{2}-4 x}$
(c) $g(x)=\frac{x^{2}+2 x+5}{x+2}$
(d) $h(x)=\frac{3 x^{2}-9 x+6}{2 x^{2}+6 x+4}$
4. Solve the following inequality using the "graphing method".

$$
x^{4}+4 x^{3}+3 x^{2} \geq 4 x+4
$$

5. Solve the following inequality using the "test points" method.

$$
\frac{x^{2}-2 x-15}{x^{2}+2 x-15} \geq 0
$$

6. Solve the following inequality using the "table of signs" method.

$$
\frac{(x-1)(x+1)(x+2)}{x-2}<0
$$

