## Second Quiz for Math 30, section 6432

The answers

1. Let $f(x)=\sqrt{x+1}$ and $g(x)=x+3$. Find the domain and the formula for
(a) $f+g$

Answer. Domain is $[-1, \infty)$. The formula is $(f+g)(x)=\sqrt{x+1}+x+3$.
(b) $f \cdot g$

Answer. Domain is $[-1, \infty)$. The formula is $(f \cdot g)(x)=(x+3) \sqrt{x+1}$
(c) $\frac{f}{g}$

Answer. Domain is $[-1, \infty)$. The formula is $\left(\frac{f}{g}\right)(x)=\frac{\sqrt{x+1}}{x+3}$.
(d) $f \circ g$

Answer. Domain is $[-4, \infty)$. The formula is $(f \circ g)(x)=\sqrt{x+4}$.
2. Let $f(x)=\frac{x+2}{x}$ and $g(x)=\frac{2}{x-1}$.
(a) Find $f \circ g$ and $g \circ f$.

Answer. $(f \cdot g)(x)=x$ and $(g \cdot f)(x)=x$.
(b) What does your result mean?

Answer. $f$ and $g$ is a pair of inverse functions.
(c) What is the range of $f$ ?

Answer. The range of $f$ equals the domain of its inverse $g$. So the range of $g$ is $(-\infty, 1) \cup$ $(1, \infty)$.

3. The graph of the function $f(x)=2^{x}$ is shown bellow together with the graph of the diagonal $y=x$. Explain why $f$ has an inverse function and then sketch the graph of $y=f^{-1}(x)$ on the same grid.

Answer. $f$ passes the "horizontal line test" and therefore is invertible. To find the graph of its inverse function $f^{-1}$ we relect the graph of $f$ with respect to the diagonal.
4. For each of the following functions find the domain, the range and the inverse function.
(a) $f(x)=4 x-5$

Answer. Domain is $(-\infty, \infty)$, range is $(-\infty, \infty)$ and the inverse function is given by the formula $f^{-1}(x)=\frac{x+5}{4}$.
(b) $g(x)=\frac{5}{x-1}$

Answer. Domain is $(-\infty, 1) \cup(1, \infty)$, range is $(-\infty, 0) \cup(0, \infty)$ and the inverse function is given by the formula $g^{-1}(x)=\frac{x+5}{x}$.
(c) $h(x)=x^{3}-4$

Answer. Domain is $(-\infty, 1) \cup(1, \infty)$, range is $(-\infty, 0) \cup(0, \infty)$ and the inverse function is given by the formula $h^{-1}(x)=\sqrt[3]{x+4}$.
(d) $k(x)=\sqrt{-x}$

Proof. Domain is $(-\infty, 0]$, range is $[0, \infty)$ and the inverse function is given by the formula $k^{-1}(x)=-x^{2}$.
5. Extra Credit: Consider the following function:

$$
f(x)=x^{2}-4 x+2
$$

(a) Use the method of completing the square to put this quadratic function in standard form. Answer. The standard form of the equation is $y=(x-2)^{2}-2$
(b) Graph $y=f(x)$.

(c) Prove that this function does not have an inverse function.

Answer. The graph of $f$ does not pass the horizontal line test. Therefore $f$ is not invertible.
(d) How can we restrict the domain of $f$ so that it has an inverse function?

Answer. If we restrict the domain of $f$ to be $[2, \infty)$ the graph of $f$ will pass the horizontal line test. An other choise of restrited domain is $(-\infty, 2]$.
(e) After the domain of $f$ has been restricted as in part (d) find $f^{-1}$.

Answer. If we restrict the domain to $[2, \infty)$ then the formula for the inverse is $f^{-1}(x)=$ $\sqrt{x+2}-2$. If we restrict the domain to $(-\infty, 2]$ the formula for the inverse is $f^{-1}(x)=$ $2-\sqrt{x+2}$.

