First Quiz for Math 30, section 6432

The answers

1. Consider the following relation:

$$
\{(1,2),(3,1),(2,3),(5,3),(4,1),(2,4)\}
$$

(a) Find its domain and its range.

Answer. Domain is $\{1,2,3,4,5\}$ and range is $\{1,2,3,4\}$.
(b) Is this relation a function? Justify your answer.

Answer. This relation is not a function because the pairs $(2,3)$ and $(2,4)$ which are in the relation have the same first coordinate but different second coordinates. This cannot happen in a relation that is a function.
2. Find the difference quotient for the function $f(x)=3 x^{2}-4 x+5$.

Answer.

$$
\begin{aligned}
\frac{f(x+h)-f(x)}{h} & =\frac{3(x+h)^{2}-4(x+h)+5-\left(3 x^{2}-4 x+5\right)}{h} \\
& =\frac{3 x^{2}+6 h x+3 h^{2}-4 x-4 h+5-3 x^{2}+4 x-5}{h} \\
& =\frac{6 h x+3 h^{2}-4 h}{h} \\
& =6 x+3 h-4
\end{aligned}
$$

3. Find the largest possible domain for the function $f(x)=\frac{2 x}{x^{2}+8 x+15}$.

Answer. The formula of the function involves denominators. So we have to make sure that the denominator is not zero. In other words we have to make sure that $x^{2}+8 x+15 \neq$ 0 . So we must have $x \neq-3$ and $x \neq-5$. So the domain is

$$
(-\infty,-5) \cup(-5,-3) \cup(-3, \infty)
$$

4. Consider the function h whose graph is shown. Find:

(a) The domain and the range.

Answer. Domain is $[-3,3]$. Range is $[-2,3]$.
(b) Intervals on which h is increasing, decreasing, or constant.

Answer. h is increasing on $(-3,-2)$ and $(-1,1)$ and decreasing on $(-2,-1)$ and $(1,3)$.
(c) Relative minima and maxima.

Answer. There are two relative maxima: at $x=-2$ with value 3 and at $x=1$ with value 2 . There are three relative minima: at $x=-3$ with value 1 , at $x=-1$ with value -2 and at $x=3$ with value 0 .
5. The graph of the function g is obtained by shifting the graph of the function $f(x)=2 x^{3}$ three units to the right along the x-axis and four units downwards along the y-axis. Find a formula for $g(x)$. (You don't need to graph g).

Answer. $g(x)=2(x-3)^{3}-4$ (Or after expanding $\left.g(x)=2 x^{3}-18 x^{2}+54 x-58\right)$.
6. Use the graph of the function $f(x)=x^{3}$ to graph

$$
y=-(x+1)^{3}-2
$$

Answer. To get the graph of $y=-(x+1)^{3}-2$ we can follow these steps:

- Shift the graph of $y=x^{3}$ by -1 unit along the x-axis to get the graph of $y=(x+1)^{3}$.
- Then reflect the graph of $y=(x+1)^{3}$ with respect to the x-axis to get the graph of $y=-(x+1)^{3}$, and finally
- shift the graph of of $y=-(x+1)^{3}$ by -2 units along the y-axis to get the graph of $y=-(x+1)^{3}-2$.

The final graph along with all the intermediate steps is shown in the following figure:

Page 3

