Answers to the first exam

1. Graph $y=x^{2}+2 x-3$. Possible x or y intercepts should be identified exactly.

Answer. We have:

$$
\begin{aligned}
x^{2}+2 x-3 & =x^{2}+2 x+1-1-3 \\
& =\left(x^{2}+2 x+1\right)-4 \\
& =(x+1)^{2}-4
\end{aligned}
$$

So the vertex of the parabola is at the point $(-1,-4)$. The parabola is concave upwards since the leading coefficient is positive. To find the x-intercepts we solve:

$$
x^{2}+2 x-3=0 \Longleftrightarrow x=-3 \quad \text { or } \quad x=1
$$

The y-intercept is obtained by setting $x=0$ in the equation. So we have:

$$
y(0)=-3
$$

In sum we have the following graph:

2. Find the domain, the range, and the inverse function of the following function:

$$
f(x)=\frac{3}{x-5}
$$

Your answers should be in interval notation.

Answer. The formula of the function involves a denominator so we have to exclude the roots of the denominator from the domain. So we must have:

$$
x-5 \neq 0 \Longleftrightarrow x \neq 5
$$

Using interval notation we have that the domain is

$$
(-\infty, 5) \cup(5, \infty)
$$

The range of f equals the domain of its inverse. So we first calculate the inverse function. We start with the equation for f :

$$
y=\frac{3}{x-5}
$$

we interchange x and y :

$$
x=\frac{3}{y-5}
$$

and then solve for y :

$$
\begin{aligned}
x=\frac{3}{y-5} & \Longleftrightarrow x(y-5)=3 \\
& \Longleftrightarrow x y-5 x=3 \\
& \Longleftrightarrow x y=5 x+3 \\
& \Longleftrightarrow y=\frac{5 x+3}{x}
\end{aligned}
$$

Therefore the inverse function has formula:

$$
f^{-1}(x)=\frac{5 x+3}{x}
$$

The denominator has to be different than 0 so the domain of f^{-1} is:

$$
(-\infty, 0) \cup(0, \infty)
$$

It follows that the range of f is $(-\infty, 0) \cup(0, \infty)$.
3. Verify that the following two functions are inverses of each other: $f(x)=\frac{3 x-1}{x+2}$ and $g(x)=$ $\frac{2 x+1}{3-x}$.

Answer. We will show that $(f \circ g)(x)=x$ and $(g \circ f)(x)=x$. We start with $f \circ g$:

$$
\begin{aligned}
(f \circ g)(x) & =f(g(x)) \\
& =\frac{3 \frac{2 x+1}{3-x}-1}{\frac{2 x+1}{3-x}+2} \\
& =\frac{\frac{6 x+3}{2-x}-1}{\frac{2 x+1}{3-x}+2} \\
& =\frac{(6 x+3)-(3-x)}{(2 x+1)+2(3-x)} \\
& =\frac{6 x+3-3+x}{2 x+1+6-2 x} \\
& =\frac{7 x}{7} \\
& =x
\end{aligned}
$$

Now $g \circ f$:

$$
\begin{aligned}
(g \circ f)(x) & =g(f(x)) \\
& =\frac{2 \frac{3 x-1}{x+2}+1}{3-\frac{3 x-1}{x+2}} \\
& =\frac{\frac{6 x-2}{x+2}+1}{3-\frac{3 x-1}{x+2}} \\
& =\frac{(6 x-2)+(x+2)}{3(x+2)-(3 x-1)} \\
& =\frac{6 x-2+x+2)}{3 x+6-3 x+1} \\
& =\frac{7 x}{7} \\
& =x
\end{aligned}
$$

Therefore f and g form a pair of inverse functions.
4. List all possible rational solutions of the following equation:

$$
2 x^{5}-3 x^{4}+5 x^{3}+x^{2}-3 x+12=0
$$

You don't need to check whether these are actual solutions. Just to list them.
Answer. A rational solution $\frac{p}{q}$ will have denominator p that divides the constant term 12 and numerator q that divides the leading coefficient 2. All divisors of 12 are $\pm\{1,2,3,4,6,12\}$ and
the divisors of 2 are $\pm\{1,2\}$. So all possible roots, listed with increasing denominator, are:

$$
\pm\left\{1,2,3,4,6,12, \frac{1}{2}, \frac{3}{2}\right\}
$$

5. (a) Solve the following equation:

$$
x^{5}+2 x^{4}-6 x^{3}-8 x^{2}+5 x+6=0
$$

Answer. All possible rational roots are $\pm\{1,2,3,6\}$. We check them starting with $x=1$. We use the synthetic division algorithm:

1	1	2	-6	-8	5	6
		1	3	-3	-11	-6
1	1	3	-3	-11	-6	0
		1	4	1	-10	
	1	4	1	-10	-16	

So $x=1$ is a single solution. Next we check $x=-1$:

-1	1	3	-3	-11	-6
		-1	-2	5	6
-1	1	2	-5	-6	0
		-1	-1	6	
	1	1	-6	0	

So $x=-1$ is a double solution. The quotient is a quadratic polynomial:

$$
x^{2}+x-6
$$

that is easily seen (by quadratic formula or factoring) to have the following two solutions:

$$
x=-3 \quad \text { or } \quad x=2
$$

In sum we have the following solutions:

$$
x=-3 \quad \text { or } \quad x=-1 \quad \text { or } \quad x=1 \quad \text { or } \quad x=2
$$

and $x=-1$ has multiplicity 2 .
(b) Sketch a rough graph of the function

$$
f(x)=x^{5}+2 x^{4}-6 x^{3}-8 x^{2}+5 x+6
$$

The graph should correctly reflect the end behavior, the behavior near zeros and the number of turning points.

Answer. From the previous part we know that the formula for f can be factored as follows:

$$
f(x)=(x+3)(x+1)^{2}(x-1)(x-2)
$$

So the end behavior of f is the same as that of $y=x^{5}$, the y-intercept is $y=6$ and the graph cuts the x-axis at $x=-3, x=1$, and $x=2$ while it touches the x-axis at $x=-1$. So a sketch of the graph will look as follows:

6. Let $f(x)=\sqrt{2 x+4}$ and $g(x)=x-1$. Find the domain and the formula for the function $\frac{f}{g}$. Answer. The formula is:

$$
\frac{f}{g}(x)=\frac{\sqrt{2 x+4}}{x-1}
$$

The formula involves a square root and a denominator. So the domain will consist of those real numbers that make the quantity under the radical sign positive and at the same time the denominator non-zero. For the radical sign we have:

$$
2 x+4 \geq 0 \Longleftrightarrow x \geq-2
$$

while for the denominator we have

$$
x-1 \neq 0 \Longleftrightarrow x \neq 1
$$

Thus the domain will be the following intersection:

$$
[2, \infty) \cap((-\infty, 1) \cup(1, \infty))
$$

We perform this calculation graphically:

We see that the domain is:

$$
[-2,1) \cup(1, \infty)
$$

7. The graph of the function g is obtained by shifting the graph of the function $f(x)=3 x^{5}$ four units to the right along the x-axis and three units downwards along the y-axis. Find a formula for $g(x)$. (You don't need to graph g).

Answer.

$$
g(x)=3(x-4)^{5}-3
$$

8. Extra Credit: Solve the inequality:

$$
x^{5}+2 x^{4}-6 x^{3}-8 x^{2}+5 x+6 \geq 0
$$

Give your answer as a union of intervals.
Hint. The polynomial is the same as in Question 5.
Answer. Let $f(x)=x^{5}+2 x^{4}-6 x^{3}-8 x^{2}+5 x+6$. Then $f(x) \geq 0$ means that the graph of $y=f(x)$ is above the x-axis. We have a qualitatively accurate graph of $y=f(x)$ from Question 5. Examining that graph we have:

Therefore the solution is the union of the following intervals:

$$
[-3,1] \cup[2, \infty)
$$

