Review for Chapter 5

Nikos Apostolakis

October 22, 2014

1. Can you figure out what is wrong in the following "proof"?

Claim. All cars have the same color.
Proof. There is only a finite number of cars in the world, let's say n. I will prove, using mathematical induction, that for any natural number $n \geq 1$, in any collection of n cars all cars have to have the same color.
Base step: For $n=1$ the proposition is obvious.
Inductive step: Assume that the cars in any collections of n cars have the same color. I will prove that the cars in any collection of $n+1$ cars have the same color. Indeed, let $\left\{c_{1}, c_{2}, \ldots, c_{n}, c_{n+1}\right\}$ be a collection of $n+1$ cars. By the inductive hypothesis, the cars $c_{1}, c_{2}, \ldots, c_{n}$ have the same color so I need to show that the car c_{n+1} has the same color as well. But this is true because by the inductive hypothesis the cars $c_{2}, \ldots, c_{n}, c_{n+1}$ have the same color.
2. Let $m \in \mathbb{N}$. Prove that for all integers $n>m$ we have:

$$
\sum_{i=m+1}^{n} i=\frac{(n-m)(n+m+1)}{2}
$$

3. Prove that for integers $n \geq 1$ we have:

$$
\sum_{i=1}^{n}(3 i-1)=\frac{n(3 n+1)}{2}
$$

4. Prove by induction that for all integers $n \geq 1$ we have:

$$
\sum_{i=1}^{n}(2 i)^{2}=\frac{2 n(n+1)(2 n+1)}{3}
$$

5. Prove that for all integers $n \geq 1$ we have:

$$
\sum_{i=1}^{n}(2 i-1)^{2}=\frac{n\left(4 n^{2}-1\right)}{3}
$$

6. Prove that for integers $n \geq 1$ we have:

$$
\sum_{i=1}^{n} 3^{i}=\frac{3^{n}-1}{2}
$$

7. Prove that for each $n \geq 1$ we have:

$$
\sum_{i=0}^{n} i^{4}=\frac{n(n+1)(2 n+1)\left(3 n^{2}+3 n-1\right)}{30}
$$

8. Prove that for integers $n \geq 1$ we have:

$$
\sum_{i=1}^{n} \frac{1}{i(i+1)}=\frac{n}{n+1}
$$

9. Prove that for integers $n \geq 1$ we have:

$$
\sum_{i=1}^{n} \frac{1}{i(i+1)(i+2)}=\frac{n(n+3)}{4(n+1)(n+2)}
$$

10. Show that for any $n \geq 0$ we have:

$$
\prod_{i=0}^{n}(2 i+1)=\frac{(2 n+1)!}{2^{n} n!}
$$

11. Prove that for all $n \in \mathbb{N}$ we have:

$$
\cos (n \pi)=(-1)^{n}
$$

12. If i is the imaginary unit (i.e. $i^{2}=-1$) prove that:

$$
(\cos \theta+i \sin \theta)^{n}=\cos (n \theta)+i \sin (n \theta)
$$

13. Prove that for natural numbers $n \geq 3$ we have $2 n+1<n^{2}$.
14. Prove that for all positive integers we have:

$$
\left(1+\frac{3}{n}\right)^{n} \geq 1+\frac{n}{3}
$$

15. Prove that for integers $n \geq 4,2^{n}<n$!.
16. Prove that for integers $n \geq 5, n^{2}<2^{n}$.
17. Prove that for all $n \in \mathbb{N}, 7$ divides $n^{7}-n$.
18. In the Country of Oz they have only 3 -cent and 5 -cent postage stamps. Prove that you can use these stamps to pay for any letter that costs 8 or more cents.
19. In Nevereverland chicken nuggets come in packages of 5 and 7 . Prove that for $n \geq 24$ a Nevereverlander can combine packages to get a total of exactly n chicken nuggets.
20. Before the nugget company in Nevereverland decided to make nugget packages of 5 and 7 nuggets, they were making packages of 4 and 6 nuggets. Find all the possible number of nuggets that a Nevereverlander could get by combining packages back then.
21. Let g_{n} be the number of bitstrings of length n with no consecutive ones. Give a recursive formula for g_{n} and prove your answer.
22. The mirror of a bitstring s is a bitstring $m(s)$ that has the same length as s and differs in every bit from s. For example the mirror of 1010001 is 0101110 . Give a recursive definition of $m(s)$ for a bitstring s.
23. Let $\Sigma=\{a, b, c\}$ be an alphabet.
(a) Give a recursive definition of the set of palindromes in Σ^{*}.
(b) Give a recursive definition for the number of palindromes of length n in Σ^{*}.
(c) Find a non-recursive formula for the number of palindromes of length n in Σ^{*}.
24. On the set Σ^{*} of words from the alphabet $\Sigma=\{I, M, W\}$ define the flip $F(s)$ of a word s as follows:

- $F(\lambda)=\lambda$, where λ is the empty word
- For a word $s, F(s I)=F(s) I, F(s W)=F(s) M$, and $F(s M)=F(s) W$

Call a word flippant if $F(s)=R(s)$, where $R(s)$ stands for the reverse of s. For example, $M I W$ is a flippant word.
(a) Give a recursive definition for the set of flippant words.
(b) How many flippant words of length n are there? Give a formula and prove it.
25. The Fina Bocci company breeds worms for fishing. After each worm is two weeks old they cut off its tail which becomes a new worm. The tail grows back in a week, so once a worm becomes two weeks old it produces a new worm every week.
(a) Assuming that no worm ever dies and that the company starts with one newly "born" worm, find a recursive formula for the the number of worms after n weeks.
(b) Prove that the formula you found in part a) is correct.
26. Consider a $n \times 2$ checker board, and let t_{n} be the number of ways that we can completely tile the board using dominoes. Find a recursive formula for t_{n}.
27. The Lucas numbers are defined by the same recursive formula as the Fibonacci numbers but with different initial conditions, namely the nth Lucas number L_{n} is defined by:

$$
L_{n}= \begin{cases}2 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ L_{n-1}+L_{n-2} & \text { if } n \geq 2\end{cases}
$$

(a) If F_{n} is the nth Fibonacci number prove that for $n \geq 1$

$$
F_{n-1}+F_{n+1}=L_{n}
$$

(b) If φ and $\bar{\varphi}$ are the two solutions of the equation $x^{2}=x+1$, prove that for all $n \geq 0$:

$$
L_{n}=\varphi^{n}+\bar{\varphi}^{n}
$$

28. A Morse code is a word in the alphabet consisting of two letters, the dot "." and the dash "-". The two letters have different length, the dot has length 1 while the dash has length 2.
(a) Give a recursive definition of the set of Morse codes M.
(b) Give a recursive definition of the length $l(s)$ of a Morse code s.
(c) Give a recursive formula for the number of Morse codes of length n. Prove this recursive formula.
29. For an integer n let c_{n} be the number of ways that n can be written as a sum of ones, twos, threes, or fours where the order that the summands are written is important. Find a recursive definition of c_{n} and prove your answer.
30. Alice and Bob play a game by taking turns removing up to 4 stones from a pile that initially has n stones. The person that removes the last stone wins the game. Alice plays always first. For which values of n does Alice have a winning strategy? For which values of n does Bob have a winning strategy? Prove your answer.
31. Chris and Deborah play a game by taking turns removing up to 4 stones from a pile that initially has n stones. The person that removes the last stone wins the game. Alice plays always first. For which values of n does Alice have a winning strategy? For which values of n does Bob have a winning strategy? Prove your answer.
32. Analyze a game that Alice and Bob, respectively Chris and Deborah, play according to the rules of the Question 30, Question 31 respectively, with the change that a player is allowed to remove m stones from the pile, for some positive integer m.
