Midterm exam

Nikos Apostolakis

October 22, 2014

1. Prove by induction that for all natural numbers $n \geq 5$ the following identity holds:

$$
\sum_{i=5}^{n} i=\frac{(n-4)(n+5)}{2}
$$

2. In the Land of Oz , they have only 5 -cent and 7 -cent stamps. Prove that you can use combinations of these stamps to pay for any letter that costs 24 or more cents.
3. Recall the recursive definition of the Fibonacci numbers f_{n} :

$$
f_{n}= \begin{cases}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ f_{n-1}+f_{n-2} & \text { if } n \geq 2\end{cases}
$$

Prove that for all natural numbers $n \geq 1$ we have:

$$
f_{n+3}=3 f_{n}+2 f_{n-1}
$$

4. Let Σ be a set of symbols. Give a recursive definition for the set Σ^{*} of strings formed from symbols in Σ.
5. Consider the alphabet $\Sigma=\{p, q\}$. The mirror $m(w)$ of a string $w \in \Sigma^{*}$ is the string we get by reading the reflection of w in a mirror. A recursive definition of the mirror of a string is the following:

- $m(\lambda)=\lambda$, where λ is the empty string.
- $m(w p)=q m(w)$
- $m(w q)=p m(w)$

A string $w \in \Sigma^{*}$ is called self-mirror if $m(w)=w$.
(a) Give a recursive definition of the set \mathcal{M} of self-mirror strings in the alphabet Σ.
(b) Give a formula for the number of words in \mathcal{M} that have length n.
(c) Prove the formula you gave in part (b).
6. Give the definition of an antisymmetric relation on a set A.
7. The relation R on the set of real numbers \mathbb{R} is defined as follows:

$$
R=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}=y^{2}\right\}
$$

Prove that:
(a) R is reflexive.
(b) R is symmetric.
(c) R is transitive.
8. Let R_{1} and R_{2} be the relations on $\{1,2,3\}$ represented the digraphs G_{1} and G_{2} shown in Figure 1.

Figure 1: The digraphs of Question 8
(a) Find the matrices M_{1} and M_{2} representing the relations R_{1} and R_{2}.
(b) Write down the relations R_{1} and R_{2} as sets of ordered pairs.
(c) Find the matrices corresponding to the relations $R_{1} \circ R_{2}$ and $R_{2} \circ R_{1}$.
(d) Write the relations $R_{1} \circ R_{2}$ and $R_{2} \circ R_{1}$ as sets of ordered pairs.
(e) Draw the digraphs representing the relations $R_{1} \circ R_{2}$ and $R_{2} \circ R_{1}$.
9. Extra Credit: Consider a $2 \times n$ checkerboard, and let t_{n} be the number of ways that we can completely tile the board using dominoes. For example as we see in Figure 2 we have $t_{1}=1$, $t_{2}=2$, and $t_{3}=3$. Find a recursive formula for t_{n} and prove that it is correct.

Figure 2: Tilling an $2 \times n$ board with dominoes for $n=1,2,3$

