Midterm exam

Nikos Apostolakis

October 22, 2014

1. Prove by induction that for all natural numbers $n \ge 5$ the following identity holds:

$$\sum_{i=5}^{n} i = \frac{(n-4)(n+5)}{2}$$

- 2. In the Land of Oz, they have only 5-cent and 7-cent stamps. Prove that you can use combinations of these stamps to pay for any letter that costs 24 or more cents.
- 3. Recall the recursive definition of the Fibonacci numbers f_n :

$$f_n = \begin{cases} 0 & \text{if } n = 0\\ 1 & \text{if } n = 1\\ f_{n-1} + f_{n-2} & \text{if } n \ge 2 \end{cases}$$

Prove that for all natural numbers $n \ge 1$ we have:

$$f_{n+3} = 3f_n + 2f_{n-1}$$

- 4. Let Σ be a set of symbols. Give a recursive definition for the set Σ^* of strings formed from symbols in Σ .
- 5. Consider the alphabet $\Sigma = \{p, q\}$. The mirror m(w) of a string $w \in \Sigma^*$ is the string we get by reading the reflection of w in a mirror. A recursive definition of the mirror of a string is the following:
 - $m(\lambda) = \lambda$, where λ is the empty string.
 - m(wp) = qm(w)
 - m(wq) = pm(w)

A string $w \in \Sigma^*$ is called *self-mirror* if m(w) = w.

- (a) Give a recursive definition of the set \mathcal{M} of self-mirror strings in the alphabet Σ .
- (b) Give a formula for the number of words in \mathcal{M} that have length n.
- (c) Prove the formula you gave in part (b).
- 6. Give the definition of an *antisymmetric* relation on a set A.

7. The relation R on the set of real numbers \mathbb{R} is defined as follows:

$$R = \{(x, y) \in \mathbb{R}^2 : x^2 = y^2\}$$

Prove that:

- (a) R is reflexive.
- (b) R is symmetric.
- (c) R is transitive.
- 8. Let R_1 and R_2 be the relations on $\{1, 2, 3\}$ represented the digraphs G_1 and G_2 shown in Figure 1.

Figure 1: The digraphs of Question 8

- (a) Find the matrices M_1 and M_2 representing the relations R_1 and R_2 .
- (b) Write down the relations R_1 and R_2 as sets of ordered pairs.
- (c) Find the matrices corresponding to the relations $R_1 \circ R_2$ and $R_2 \circ R_1$.
- (d) Write the relations $R_1 \circ R_2$ and $R_2 \circ R_1$ as sets of ordered pairs.
- (e) Draw the digraphs representing the relations $R_1 \circ R_2$ and $R_2 \circ R_1$.
- 9. Extra Credit: Consider a $2 \times n$ checkerboard, and let t_n be the number of ways that we can completely tile the board using dominoes. For example as we see in Figure 2 we have $t_1 = 1$, $t_2 = 2$, and $t_3 = 3$. Find a recursive formula for t_n and prove that it is correct.

Figure 2: Tilling an $2 \times n$ board with dominoes for n = 1, 2, 3