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1. Prove by induction that for all natural numbers n ≥ 5 the following identity holds:

n
∑

i=5

i =
(n− 4)(n+ 5)

2

Solution. Let P (n) be the proposition:

P (n) ≡
n
∑

i=5

i =
(n− 4)(n+ 5)

2

We will prove by induction that P (n) is true for all natural numbers n ≥ 5. The basic step is
to prove the P (5). Indeed for n = 5 we have the proposition:

5
∑

i=5

i =
(5− 4)(5 + 5)

2

which is true since both sides are equal to 5. For the inductive step we need to prove that if
for some natural number k, P (k) is true then P (k + 1) is also true. So we assume that

k
∑

i=5

i =
(k − 4)(k + 5)

2

and we will prove that
k+1
∑

i=5

i =
(k + 1− 4)(k + 1 + 5)

2

or equivalently:
k+1
∑

i=5

i =
(k − 3)(k + 6)

2

1



We have:

k+1
∑

i=5

i =
k

∑

i=5

i+ (k + 1)

=
(k − 4)(k + 5)

2
+ (k + 1)

=
k2 + k − 20 + 2k + 2

2

=
k2 + 3k − 18

2

=
(k − 3)(k + 6)

2

where to go from the first line to the second we used the inductive hypothesis. So P (k+1) has
been proven, and the inductive step is completed.

2. In the Land of Oz, they have only 5-cent and 7-cent stamps. Prove that you can use combina-
tions of these stamps to pay for any letter that costs 24 or more cents.

Solution. We’ll prove this by strong induction. Let P (n) be the statement: “One can make a
postage of n cents by using combinations of 5-cent and 7-cent stamps.”.

For the basic step we prove P (24), P (25), P (26), P (27), and P (28). Indeed, 24 = 2×5+2×7,
25 = 5× 5, 26 = 1× 5 + 3× 7, 27 = 4× 5 + 1× 7, and 28 = 4× 7.

For the inductive step, we assume that P (j) is true for all integers 24 ≤ j ≤ k, where k is
an integer with k ≥ 28, and we will prove that P (k + 1) is true. Indeed since 28 ≤ k then
24 ≤ k− 4 < k so by the inductive hypothesis P (k− 4) is true so we can form postage of k− 4
cents using only 5-cent and 7-cent stamps. But then

k + 1 = (k − 4) + 5

so we can form postage of k + 1 cents by just adding one 5-cent stamp to the postage of k − 4
cents. This concludes the inductive step.

3. Recall the recursive definition of the Fibonacci numbers fn:

fn =











0 if n = 0

1 if n = 1

fn−1 + fn−2 if n ≥ 2

Prove that for all natural numbers n ≥ 1 we have:

fn+3 = 3fn + 2fn−1

Solution. We will use strong induction. Let P (n) ≡ fn+3 = 3fn + 2fn−1.

For the basic step we prove P (1), and P (2). P (1) is

f4 = 3f1 + 2f0
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which is true since f0 = 0 and f1 = 1, and f4 = 3. P (2) is

f5 = 3f2 + 2f1

which is true since f5 = 5, f1 = 1, and f2 = 1.

For the inductive step we assume that P (j) is true for all integers 1 ≤ j ≤ k, where k is an
integer with k ≥ 2 and we will prove that P (k + 1) is true. That is we will prove that

fk+4 = 3fk+1 + 2fk

We have

fk+4 = fk+3 + fk+2

= (3fk + 2fk−1) + (3fk−1 + 2fk−2)

= 3(fk + fk−1) + 2(fk−1 + fk−2)

= 3fk+1 + 2fk

where the first line follows from the recursive definition of the Fibonacci sequence, to go from
the first line to the second we used the inductive hypothesis that P (k) and P (k − 1) are true,
and to go from the third line to the fourth we used the recursive definition of the Fibonacci
numbers.

4. Let Σ be a set of symbols. Give a recursive definition for the set Σ∗ of strings formed from
symbols in Σ.

Solution. This is Definition 1, on page 349 of the seventh edition of the textbook. It’s also
Definition 2, on page 300 of the sixth edition.

5. Consider the alphabet Σ = {p, q}. The mirror m(w) of a string w ∈ Σ∗ is the string we get by
reading the reflection of w in a mirror. A recursive definition of the mirror of a string is the
following:

• m(λ) = λ, where λ is the empty string.

• m(wp) = qm(w)

• m(wq) = pm(w)

A string w ∈ Σ∗ is called self-mirror if m(w) = w.

(a) Give a recursive definition of the set M of self-mirror strings in the alphabet Σ.

(b) Give a formula for the number of words in M that have length n.

(c) Prove the formula you gave in part (b).

Solution. (a) The following is a recursive definition of M:

• The empty string λ is in M.

• If s ∈ M then psq ∈ M.

• If s ∈ M then qsp ∈ M
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(b) The following is a formula for sn the number of self-mirror strings of length n.

sn =

{

2k if n = 2k

0 if n = 2k + 1

(c) For n ∈ N let P (n) be the following proposition: “There are 2n self-mirror strings of length
2n and no self-mirror strings of length 2n+ 1.”. We will prove this by induction.

For n = 0, P (0) is true since there is one self-mirror string of length 0, namely the empty
string, and there are no self-mirror strings of length 1 since neither p nor q are self-mirror.

For the inductive step we assume that P (k) is true. To prove P (k + 1) we need to prove
that there are 2k+1 self-mirror strings of length 2(k+1) = 2k+2 and no self-mirror strings
of length 2(k + 1) + 1 = 2k + 3.

Let s be a self-mirror string of length 2k+2, then s = ps′q or s = qs′p for some self-mirror
string s′ of length 2k. Conversely if s′ is a self-mirror string of length 2k then ps′q and
qs′p are self-mirror strings of length 2k + 2. It follows that

s2k+2 = 2s2k

= 2 · 2k

= 2k+1

where to go from the first line to the second we used the inductive hypothesis.

It remains to prove that there are no self-mirror strings of length 2k + 3. Arguing for
contradiction, assume that s is a self-mirror string of length 2k + 3. Then s = ps′q or
s = qs′p for some self-mirror string s′ of length 2k + 1. But since P (k) is true, no such
string s′ exists which is contradiction. Therefore there are no such strings s.

6. Give the definition of an antisymmetric relation on a set A.

Solution. This is the second part of Definition 4, on page 577 of the seventh edition of the
textbook. It’s also the second part of Definition 4, on page 523 of the sixth edition.

7. The relation R on the set of real numbers R is defined as follows:

R = {(x, y) ∈ R
2 : x2 = y2}

Prove that:

(a) R is reflexive.

Solution. Let x ∈ R then x2 = x2 and so (x, x) ∈ R. Thus R is reflexive.

(b) R is symmetric.

Solution. Let x, y ∈ R so that (x, y) ∈ R, then x2 = y2 but then y2 = x2 and so (y, x) ∈ R.
Thus R is symmetric.

(c) R is transitive.
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Solution. Let x, y, z ∈ R and assume that (x, y) ∈ R and (y, z) ∈ R. Then x2 = y2 and
y2 = z2. But then we have also that x2 = z2 and so (x, z) ∈ R. Thus R is transitive.

8. Let R1 and R2 be the relations on {1, 2, 3} represented the digraphs G1 and G2 shown in
Figure 1.

1 2

3

G1

1 2

3

G2

Figure 1: The digraphs of Question 8

(a) Find the matrices M1 and M2 representing the relations R1 and R2.

Solution.

M1 =





0 1 0
1 1 1
1 0 0



 , M2 =





0 1 0
0 1 1
1 1 1





(b) Write down the relations R1 and R2 as sets of ordered pairs.

Solution.

R1 = {(1, 2), (2, 1), (2, 2), (2, 3), (3, 1)}

and
R2 = {(1, 2), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}

(c) Find the matrices corresponding to the relations R1 ◦R2 and R2 ◦R1.

Solution. The matrix corresponding to R1 ◦R2 is

M1 ⊙M2 =





1 1 1
1 1 1
0 1 0





The matrix corresponding to R2 ◦R1 is

M2 ⊙M1 =





1 1 1
1 1 1
1 1 1
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(d) Write the relations R1 ◦R2 and R2 ◦R1 as sets of ordered pairs.

Proof.

R1 ◦R2 = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 2)}

and
R2 ◦R1 = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}

(e) Draw the digraphs representing the relations R1 ◦R2 and R2 ◦R1.

Solution. See Figure 2.

1 2

3

R1 ◦R2

1 2

3

R2 ◦R1

Figure 2: The answer to Question 8 (e)

9. Extra Credit: Consider a 2× n checkerboard, and let tn be the number of ways that we can
completely tile the board using dominoes. For example as we see in Figure 3 we have t1 = 1,
t2 = 2, and t3 = 3. Find a recursive formula for tn and prove that it is correct.

n = 1 n = 2

n = 3

Figure 3: Tilling an 2× n board with dominoes for n = 1, 2, 3

Solution. We have the following recursive formula:

tn =











1 if n = 1

2 if n = 2

tn−1 + tn−2 if n ≥ 3
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As seen in Figure 3 the formula is correct for n = 1 and n = 2. For n ≥ 3 notice that the
tillings of the 2×n board fall into two disjoint categories, those that end with a vertical domino
and those that end with two horizontal dominoes1. There are tn−1 tillings in the first category2

and tn−2 in the second3. It follows that

tn = tn−1 + tn−2

Followup Question

Here are some follow up questions. Their solution should be very similar to the questions in the
exam.

1. Prove by induction that for all natural numbers n we have:

n
∑

i=5

i2 =
(n− 4)(2n2 + 11n+ 45)

6

2. Prove that we can get any amount of 24 or more chicken nuggets by using only packages of 4
or 9 chicken nuggets.

3. Extra Credit What amounts of chicken nuggets can we get if we are only using packages that
contain 3 or 6 chicken nuggets? Prove your answer.

4. If fn is the n-th Fibonacci number, prove that for all n ≥ 1 we have:

fn+5 = 8fn + 5fn−1

5. Consider the alphabet Σ = {p, o, q}. The mirror m(w) of a string w ∈ Σ∗ is the string we get
by reading the reflection of w in a mirror. A recursive definition of the mirror of a string is the
following:

• m(λ) = λ, where λ is the empty string.

• m(wo) = om(w)

• m(wp) = qm(w)

• m(wq) = pm(w)

A string w ∈ Σ∗ is called self-mirror if m(w) = w.

(a) Give a recursive definition of the set M of self-mirror strings in the alphabet Σ.

(b) Give a formula for the number of words in M that have length n.

(c) Prove the formula you gave in part (b).

1For example the first tilling for n = 3 in Figure 3 falls into the the second category and the last two fall into the

first.
2Why?
3Why?
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6. The relation R on the set of real numbers R is defined as follows:

R = {(x, y) ∈ R
2 : sinx = sin y}

Prove that R is an equivalence relation.

7. Consider the relations R, and S on the set {1, 2, 3, 4} represented by the digraphs in Figure 4

1 2

3 4

R

1 2

3 4

S

Figure 4: The digraphs of Question 6

(a) Find the matrices MS and MR.

(b) Use these matrices to compute the compositions R ◦ S and S ◦R.

(c) Draw the digraphs that represent R ◦ S and S ◦R.

8. For n ∈ N, let gn be the number of bitstrings of length n that contain no consecutive ones. For
example g0 = 1, because the only bitstring of length 0 that does not contain two consecutive
ones is the empty string, g1 = 2 because we have the bitstrings 0 and 1, and g3 = 3 because we
have the bitstrings 00, 01, 10. Give a recursive definition of gn and prove that it is correct.

9. Extra Credit This question is new, but you’ve seen similar ones before. Julie and her partner
invited n couples for dinner at their place. Afterwards Julie asked everybody (except herself
of course) with how many people they had shook hands, and noticed that everybody gave a
different number. Assuming that no one shook hands with their partner, prove that Julie’s
partner shook hands with exactly n people.
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