Third Quiz for Math 31

The answers

1. State the Intermediate Value Theorem.

Answer. It's on page 89, of the seventh edition of the textbook.
2. Let $f(t)=t+t^{-1}$. A particle moves along a straight line with equation of motion $s=f(t)$, where s is measured in meters and t in seconds. Find the velocity of the particle for $t=\frac{1}{2}, t=1$, and $t=2$.

Answer. The velocity of the particle is given by $v=f^{\prime}(t)$. We first find a formula for $f^{\prime}(t)$:

$$
\begin{aligned}
f^{\prime}(t) & =\lim _{h \rightarrow 0} \frac{f(t+h)-f(t)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(t+h)+(t+h)^{-1}-\left(t+t^{-1}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{t+h+\frac{1}{t+h}-t-\frac{1}{t}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h+\frac{1}{t+h}-\frac{1}{t}}{h} \\
& =\lim _{h \rightarrow 0}\left(1+\frac{\frac{1}{t+h}-\frac{1}{t}}{h}\right) \\
& =1+\lim _{h \rightarrow 0} \frac{\frac{1}{t+h}-\frac{1}{t}}{h} \\
& =1+\lim _{h \rightarrow 0} \frac{\frac{t-(t+h)}{t(t+h)}}{h} \\
& =1+\lim _{h \rightarrow 0} \frac{\frac{-h}{\frac{t(t+h)}{h}}}{} \\
& =1+\lim _{h \rightarrow 0} \frac{-1}{t(t+h)} \\
& =1-\frac{1}{t^{2}}
\end{aligned}
$$

Now we can calculate:

$$
\begin{aligned}
v\left(\frac{1}{2}\right) & =1-\frac{1}{\left(\frac{1}{2}\right)^{2}}=1-4=-3 \\
v(1) & =1-\frac{1}{1^{2}}=0 \\
v(2) & =1-\frac{1}{2^{2}}=1-\frac{1}{4}=\frac{3}{4}
\end{aligned}
$$

3. Let

$$
f(x)=\sqrt{x-3}
$$

(a) Use the definition of the derivative as a limit to find $f^{\prime}(x)$.

Answer. We have:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{x+h-3}-\sqrt{x-3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{x+h-3}-\sqrt{x-3}}{h} \frac{\sqrt{x+h-3}+\sqrt{x-3}}{\sqrt{x+h-3}+\sqrt{x-3}} \\
& =\lim _{h \rightarrow 0} \frac{(x+h-3)-(x-3)}{h(\sqrt{x+h-3}+\sqrt{x-3})} \\
& =\lim _{h \rightarrow 0} \frac{h}{h(\sqrt{x+h-3}+\sqrt{x-3})} \\
& =\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h-3}+\sqrt{x-3}} \\
& =\frac{1}{\sqrt{x-3}+\sqrt{x-3}} \\
& =\frac{1}{2 \sqrt{x-3}}
\end{aligned}
$$

(b) Find the tangent line to the graph of $y=f(x)$ at the point with coordinate $x=12$.

Answer. The point on the graph of $y=f(x)$ with $x=12$ has $y=\sqrt{12-3}=3$. The slope of the tangent line at that point is $f^{\prime}(12)=\frac{1}{2 \sqrt{12-3}}=\frac{1}{6}$. Thus the tangent line has equation:

$$
y-3=\frac{1}{6}(x-12)
$$

or equivalently

$$
y-3=\frac{x}{6}-2
$$

which simplifies further to

$$
y=\frac{x}{6}+1
$$

4. The graph of a function f and its derivative f^{\prime} are shown below. Identify which graph is which.

Answer. The blue graph is the graph of f and the magenta graph the graph of f^{\prime}. The derivative is the slope of the tangent line. So when the tangent line of the graph of f is horizontal the graph of f^{\prime} should intersect the x-axis.

