Quiz 2

Take home

You should fully justify your answers. Do all your work on separate paper, and make sure to print your name in the first sheet and staple all the sheets together. Unstapled, loose pieces of paper will not be graded. This quiz is due on Monday, September 19, at 8:00am.

1. Does the limit $\lim _{x \rightarrow \infty} \sin x$ exist?
2. Find the limit

$$
\lim _{x \rightarrow \infty} \frac{\sin x}{x}
$$

Hint. Use the Squeeze theorem.
3. Explain in detail why the function

$$
f(x)=\frac{(2+x)^{3}-7}{1+x^{2}}-\sqrt{x^{2}+3}-\sin (\cos (3 x))
$$

is continuous on $(-\infty, \infty)$.
4. Find the points that each of the following functions is discontinuous and identify the nature of the discontinuity:
(a) $f(x)= \begin{cases}\frac{|x|}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}$
(b) $g(x)= \begin{cases}\frac{\sin x}{x} & \text { if } x \neq 0 \\ 3 & \text { if } x=0\end{cases}$
(c) $g(x)= \begin{cases}\frac{3}{(x-5)^{2}} & \text { if } x \neq 5 \\ 5 & \text { if } x=5\end{cases}$
5. Find the real number a so that the function defined by

$$
f(x)= \begin{cases}2 x-a & \text { if }-\infty \leq x \leq \pi \\ \sin x & \text { if } \pi<x<\infty\end{cases}
$$

is continuous on \mathbb{R}.
6. Give an example of a function that
(a) has a jump discontinuity at $x=-5$.
(b) has a removable singularity at $x=0$.
(c) has an infinite discontinuity at $x=3$.
(d) is continuous everywhere except at $x=0$ and the discontinuity is not jump, removable or infinite.
7. Prove that the equation $2^{x}=x^{2}$ has a solution in the interval $[-1,0] .{ }^{1}$ Use a computer or a calculator to approximate that solution to the second decimal place.

[^0]8. Extra Credit Use the fact that
$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$
to evaluate the following limits
(a) $\lim _{x \rightarrow 0} \frac{\sin 5 x}{5 x}$
(b) $\lim _{x \rightarrow 0} \frac{\sin 3 x}{x}$
(c) $\lim _{x \rightarrow 0} \frac{\sin 2 x}{3 x}$
(d) $\lim _{x \rightarrow 0} \frac{\cos x-1}{x}$

Hint. Remember Pythagoras!

[^0]: ${ }^{1}$ This equation has also two obvious positive solutions can you find them?

