First Quiz for Math 31

The answers

1. Calculate the following limits. If you think a certain limit doesn't exist state so and explain why.
(a) $\lim _{x \rightarrow 2} \frac{x^{2}-x-2}{x^{2}+x-6}$.

Answer. The limit of both the numerator and the denominator as $x \rightarrow 2$ is 0 so we have a $0 / 0$ indeterminate form. We have that for $x \neq 2$,

$$
\begin{aligned}
\frac{x^{2}-x-2}{x^{2}+x-6} & =\frac{(x-2)(x+1)}{(x-2)(x+3)} \\
& =\frac{x+1}{x+3}
\end{aligned}
$$

So

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{2}-x-2}{x^{2}+x-6} & =\lim _{x \rightarrow 2} \frac{x+1}{x+3} \\
& =\frac{2+1}{2+3} \\
& =\frac{3}{5}
\end{aligned}
$$

(b) $\lim _{x \rightarrow-4} \frac{|x+4|}{x+4}$.

Answer. We have

$$
|x+4|= \begin{cases}x+4 & \text { if } x+4 \geq 0 \\ -(x+4) & \text { if } x+4<0\end{cases}
$$

or equivalently:

$$
|x+4|= \begin{cases}x+4 & \text { if } x \geq-4 \\ -(x+4) & \text { if } x<-4\end{cases}
$$

Therefore:

$$
\frac{|x+4|}{x+4}= \begin{cases}1 & \text { if } x+4>0 \\ -1 & \text { if } x+4<0\end{cases}
$$

It follows that

$$
\lim _{x \rightarrow-4^{-}} \frac{|x+4|}{x+4}=\lim _{x \rightarrow-4^{-}}(-1)=-1
$$

while

$$
\lim _{x \rightarrow-4^{+}} \frac{|x+4|}{x+4}=\lim _{x \rightarrow-4^{+}} 1=1
$$

Since the left- and right-hand limits are different it follows that the limit does not exist.
(c) $\lim _{t \rightarrow 0} \frac{\sqrt{t^{2}+9}-3}{t^{2}}$

Answer. Again we have a $0 / 0$ indeterminate form. Since there is a radical expression in the numerator we'll multiply numerator and denominator with its conjugate radical expression:

$$
\begin{aligned}
\frac{\sqrt{t^{2}+9}-3}{t^{2}} & =\frac{\sqrt{t^{2}+9}-3}{t^{2}} \frac{\sqrt{t^{2}+9}+3}{\sqrt{t^{2}+9}+3} \\
& =\frac{\left(t^{2}+9\right)-9}{t^{2}\left(\sqrt{t^{2}+9}+3\right)} \\
& =\frac{t^{2}}{t^{2}\left(\sqrt{t^{2}+9}+3\right)} \\
& =\frac{1}{\sqrt{t^{2}+9}+3}
\end{aligned}
$$

So,

$$
\begin{aligned}
\lim _{t \rightarrow 0} \frac{\sqrt{t^{2}+9}-3}{t^{2}} & =\lim _{t \rightarrow 0} \frac{1}{\sqrt{t^{2}+9}+3} \\
& =\frac{1}{\sqrt{0^{2}+9}+3} \\
& =\frac{1}{6}
\end{aligned}
$$

(d) $\lim _{x \rightarrow \infty} \frac{5 x^{4}-3 x^{2}+2 x-1}{-3 x^{3}+7 x^{2}-8}$

Answer. In this case we have a ∞ / ∞ indeterminate form. We have:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{5 x^{4}-3 x^{2}+2 x-1}{-3 x^{3}+7 x^{2}-8} & =\lim _{x \rightarrow \infty} \frac{x^{4}\left(5-\frac{3}{x^{2}}+\frac{2}{x^{3}}-\frac{1}{x^{4}}\right)}{x^{3}\left(-3+\frac{7}{x}-\frac{8}{x^{3}}\right)} \\
& =\lim _{x \rightarrow \infty} x \frac{5-\frac{3}{x^{2}}+\frac{2}{x^{3}}-\frac{1}{x^{4}}}{-3+\frac{7}{x}-\frac{8}{x^{3}}} \\
& =\infty \cdot \frac{5-0+0-0}{-3+0+0} \\
& =\infty \cdot\left(-\frac{5}{3}\right) \\
& =-\infty
\end{aligned}
$$

2. Let

$$
f(x)= \begin{cases}a x^{2}-3 x+4 & \text { if } x \leq 2 \\ x+3 a & \text { if } x>2\end{cases}
$$

Find the real number a so that $\lim _{x \rightarrow 2} f(x)$ exists.
Answer. In order for $\lim _{x \rightarrow 2} f(x)$ to exist we need the left- and right-hand limits to exist and be equal. So we need:

$$
\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)
$$

Now:

$$
\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}}\left(a x^{2}-3 x+4\right)=4 a-2
$$

and

$$
\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}(x+3 a)=3 a+2
$$

Thus in order for the limit to exist we need

$$
4 a-2=3 a+2
$$

or equivalently,

$$
a=4
$$

3. By examining the graphs calculate the required limits. If you think that a certain limit doesn't exist state so.
a)

b)

c)

c)

