BRONX COMMUNITY COLLEGE
 of the City University of New York

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

MATH 31
Nikos Apostolakis

Exam 2
November 14, 2011

Name: \qquad

Directions: Write your answers in the provided booklets. Make sure to indicate which answer belongs to which question. To get full credit you must show all your work. Simplify your answers whenever possible. Be certain to indicate your final answer clearly. This exam has a total of 1000 points. The perfect score for this exam is 1000 points.

1. (150 points) Prove that the equation

$$
2 x^{3}+9 x^{2}+42 x-5=0
$$

has exactly one real solution.
2. Let $f(x)=3 x^{4}+4 x^{3}-12 x^{2}-10$.
(a) (100 points) Find the (absolute) extremum values of f in the interval $[-3,2]$.
(b) (100 points) How many real solutions does the equation $f(x)=0$ have?
3. (200 points) Sketch a graph of the function

$$
f(x)=\left|x^{3}-2 x^{2}+x\right|
$$

The graph should correctly indicate x and y intercepts, local extrema, points of inflection, the intervals where f is increasing or decreasing, and the intervals where f is concave upwards or downwards.
4. (250 points) Sketch a graph of the function

$$
f(x)=\cos x-\sin x
$$

The graph should correctly indicate x and y intercepts, local extrema, points of inflection, the intervals where f is increasing or decreasing, and the intervals where f is concave upwards or downwards.
5. (200 points) Sketch a graph of the function

$$
f(x)=\frac{x^{2}-4}{x^{2}-1}
$$

The graph should correctly indicate x and y intercepts, local extrema, points of inflection, the intervals where f is increasing or decreasing, the intervals where f is concave upwards or downwards, and any horizontal or vertical asymptotes.

