Second Exam
THE ANSWERS

1. Prove that the equation
203 + 922 + 422 —5=0

has exactly one real solution.
Answer. Let f(z) = 223 + 922 + 422 — 5. Then f, being a polynomial map, is continuous and
differential on R. Now f(0) = —5 and f(1) = 48, and since 0 is between —1 and 48 it follows

from the Intermediate Value Theorem that for some ¢ in (0,1) we have f(c) =0, i.e. that c is
a solution to the given equation.

On the other hand we have
f(z) = 62% 4+ 182 4+ 42 = 6(2® + 3z + 7)

Now 22 + 3x + 7 is a quadratic polynomial with negative discriminant (indeed, D =9 —4-7 =
—19), so it has no real zeros. It follows that f/(x) # 0 for all real numbers z and therefore f
is a one-to-one function. Thus f(x) = 0 can not have two different solutions.

So, f(x) = 0 has exactly one solution. O

2. Let f(x) = 32* + 423 — 1222 — 10.

(a) Find the (absolute) extremum values of f in the interval [—3,2].

Answer. The extrema will occur at the endpoints or at the critical points of f. Since f is
differentiable everywhere the only critical points of f occur when the derivative f’ is zero.
We have:

f(x) = 1223 + 1227 — 24x

So
fl(z) =0 <= 1223 +122% — 242 =0
= 12z(2x* +2-2) =0
= 12z(x+2)(z—1)=0

—x=0,orx=-2 orx=1

We have the following table of the values of f at the endpoints and critical points:

z | f(z)
-3 17
-2 | —42
1 —15
0 | —10
2 22
So the absolute minimum value is —42 and it occurs at x = —2 while the absolute maximum
value is 22 and it occurs at © = 2. ]

(b) How many real solutions does the equation f(x) = 0 have?



Answer. We will sketch a “stick” graph of y = f(x). For this we need to know the sign of
the first derivative. We already know the critical points of f from the previous part, and
we can construct the following table of signs:

—00 —2 0 1 00
) T T
o - % v hey
i@ N \ » ‘x‘ g
42 10 —15 99

From the graph we see that the equation f(x) = 0 has exactly two real solutions. O

3. Sketch a graph of the function
f(z) = |2 — 22% + x|

The graph should correctly indicate x and y intercepts, local extrema, points of inflection, the
intervals where f is increasing or decreasing, and the intervals where f is concave upwards or
downwards.

Answer. We will first graph the function g(z) = 23 — 222 4+ 2, and then from this graph we will
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deduce the graph of f. We first calculate the z-intercepts:
glx)=0<=2>-222 +2=0
— (2 -22+1)=0
—z(z-1)%=0
<—z=0,orx=1
The y-intercept is the origin (0,0).

We next examine the end behavior of g(z):

A 9(@) = —oe, - Jim g(v) = oo,

Next we calculate the critical points of g. Since g is differentiable everywhere the only critical
points will be the zeros of the fist derivative. We have:

g (x) =322 -4z +1
So:
d(x)=0<=322—42+1=0

A+ V4
6

T

1
— x=1, orx:§

Next we calculate the critical points of ¢’. Since ¢’ is differentiable everywhere the critical
points of ¢’ are the zeros of g”. We have:

" (z) =6z — 4
So

2
g”(a:):0<:>a::§

Now we construct a table that shows the signs of ¢’ and ¢”, and the behavior of g:

2
3

1
I L e
g (z) + 0 - - 0 +
g" () — - 0 + +
g(x)
4 2 0
27 27
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Figure 1: The graph of y = 23 — 222 + z

Putting all this information together we have the following graph in Figure 1 for g(x).
From this we get the graph in Figure 2 for f(z) = |g(x)| O

. Sketch a graph of the function
f(xz) =cosx —sinz
The graph should correctly indicate x and y intercepts, local extrema, points of inflection, the

intervals where f is increasing or decreasing, and the intervals where f is concave upwards or
downwards.

Answer. This is a periodic function with period 27, so we’ll only analyze it in the interval
[0, 27]. We start by finding the z-intercepts:

f(z) =0<+=cosz —sinz =0
<= cosx =sinx
< tanx =1
T 5%
— = n orx=—

4
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Figure 2: The graph of y = |23 — 222 + z|

Next we find the critical points of f. We have:
f'(z) = —sinx — cosz
So we have:
f'(x) =0 = —sinz — cosz =0
—>sinz = —cosz

< tanzx = —1

. 3 7T
r=—, 0rxr——
4’ 4

Next we find the critical points of f’, that is the zeros of f”:

f"(x) = —cosx +sinx
So we have:
() =0= —cosz +sinz =0
= cosz =sinz

< tanx =1

. T o %
I=—, Or L = —
4’ 4
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We next make a table of values for f:

z | f(x)
0 cosO0—sin0=1

s s s m
1 cosy —sing =0

3 3 S
1 COS 5 —sIn < = \/§
5 5T _ qip BT —

T | cos sm4—0

T T D
T COST—SIDZ—\/é

21 | cos2m —sin2w =1

Now we construct the table of signs:

o
ISR

2

o —e »&‘;'

OININ— AT

1 0 ) 0 NG 1

where to find the sign of f’ we used as test-points the values 0, T, %, and 27. To get the sign
of f" we used the test-points 0, 3%, 7 and 2.

s 40 4
So for 0 < & < 27 we have the graph of Figure 3
2
A (0.4/2)
1 '\
O T T T T T T )
-1
_9 (07 _\/i)
0O © T 3 T 57 3w Tr 2f
4 2 7] ] 2 4

Figure 3: The graph of y = cosx — sinz on the interval [0, 27]

Since f is periodic with period 27 the graph will repeat at intervals of length 2.

Page 6



AN N
VAN A

g
4 4 T4 T 1 T 1 4 T 4 1 7

Figure 4: The graph of y = cosz — sinx

5. Sketch a graph of the function
_ z2—4
fl@)= 55—
The graph should correctly indicate x and y intercepts, local extrema, points of inflection,
the intervals where f is increasing or decreasing, the intervals where f is concave upwards or
downwards, and any horizontal or vertical asymptotes.

Answer. The domain of f is {z : x # 1 and x # —1}. We notice that f is an even function, so
we’ll concentrate on the graph of y = f(x) for x > 0.

The y-intercept of y = f(x) is at f(0) = 4.
We then find the z-intercepts:

2 —4
=0

2 —4=0

=0

<< xr=-2o0rx =2

Next we find the end behavior; by symmetry we only look at x — oo:

. . 22— 4
) = g oy
4
1=—
= lim ‘7:1
1’*)001_7
2

_1-0

- 1-0

Thus the line y = 1 is a horizontal asymptote.

Next we look at the behavior near the points where f is not defined. Again by symmetry we
only look at the behavior near x = 1. We have

2—4 1-4
a:igl— f(l’) xlgl— 35'2 -1 0~ o
and )
xc —4 1—-4
1‘ = 1‘ —_— — = —
Jm flo) =l e = o =

So the line z = 1 is a vertical asymptote.

Next we find the intervals where f is increasing or decreasing and the intervals where the graph
is concave upwards or downwards. We have:
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2z(2% — 1) — (2% — 4)22

/ _
f (l‘) - ($2 _ 1)2
_ 223 — 22 — 2% + 8z
T @1y
6x
T @1y

We notice that the derivative exists for all  in the domain of f, therefore the critical points of
f are the solutions to:

Next we look at the second derivative:
() = 6(x2 — 1) — 6z - 2(x2 — 1)22
(@ -1
6(x2 —1) — 6z -2 27
T (@
—182% — 6
G
6(3z% +1)
ERGE
We notice that the second derivative exists for all z in the domain of f so that the critical
points of f’ are the solutions to

6(3x2 + 1)
(2 —1)3
~—32241=0

f(x) =0 — =0

Since the last equation has no real solutions the first derivative has no critical points.
Now we find the sign of f’ and f”. We have the following table:

0 1 0
F) ¥ y
o) + i -
() \J ~

4

So we have the graph of Figure 5 for y = f(x) on [0,00): Since f is even its graph is symmetric
with respect to the y-axis. So we have the graph of Figure 6 for y = f(x) : O
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Figure 5: The graph of y
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Figure 6: The graph of y
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