Second Exam

The Answers

1. Prove that the equation

$$
2 x^{3}+9 x^{2}+42 x-5=0
$$

has exactly one real solution.
Answer. Let $f(x)=2 x^{3}+9 x^{2}+42 x-5$. Then f, being a polynomial map, is continuous and differential on \mathbb{R}. Now $f(0)=-5$ and $f(1)=48$, and since 0 is between -1 and 48 it follows from the Intermediate Value Theorem that for some c in $(0,1)$ we have $f(c)=0$, i.e. that c is a solution to the given equation.

On the other hand we have

$$
f^{\prime}(x)=6 x^{2}+18 x+42=6\left(x^{2}+3 x+7\right)
$$

Now $x^{2}+3 x+7$ is a quadratic polynomial with negative discriminant (indeed, $D=9-4 \cdot 7=$ $-19)$, so it has no real zeros. It follows that $f^{\prime}(x) \neq 0$ for all real numbers x and therefore f is a one-to-one function. Thus $f(x)=0$ can not have two different solutions.
So, $f(x)=0$ has exactly one solution.
2. Let $f(x)=3 x^{4}+4 x^{3}-12 x^{2}-10$.
(a) Find the (absolute) extremum values of f in the interval $[-3,2]$.

Answer. The extrema will occur at the endpoints or at the critical points of f. Since f is differentiable everywhere the only critical points of f occur when the derivative f^{\prime} is zero. We have:

$$
f^{\prime}(x)=12 x^{3}+12 x^{2}-24 x
$$

So

$$
\begin{aligned}
f^{\prime}(x)=0 & \Longleftrightarrow 12 x^{3}+12 x^{2}-24 x=0 \\
& \Longleftrightarrow 12 x\left(x^{2}+x-2\right)=0 \\
& \Longleftrightarrow 12 x(x+2)(x-1)=0 \\
& \Longleftrightarrow x=0, \text { or } x=-2, \text { or } x=1
\end{aligned}
$$

We have the following table of the values of f at the endpoints and critical points:

x	$f(x)$
-3	17
-2	-42
1	-15
0	-10
2	22

So the absolute minimum value is -42 and it occurs at $x=-2$ while the absolute maximum value is 22 and it occurs at $x=2$.
(b) How many real solutions does the equation $f(x)=0$ have?

Answer. We will sketch a "stick" graph of $y=f(x)$. For this we need to know the sign of the first derivative. We already know the critical points of f from the previous part, and we can construct the following table of signs:

So we have the following very rough "stick" graph for f :

From the graph we see that the equation $f(x)=0$ has exactly two real solutions.
3. Sketch a graph of the function

$$
f(x)=\left|x^{3}-2 x^{2}+x\right|
$$

The graph should correctly indicate x and y intercepts, local extrema, points of inflection, the intervals where f is increasing or decreasing, and the intervals where f is concave upwards or downwards.

Answer. We will first graph the function $g(x)=x^{3}-2 x^{2}+x$, and then from this graph we will
deduce the graph of f. We first calculate the x-intercepts:

$$
\begin{aligned}
g(x)=0 & \Longleftrightarrow x^{3}-2 x^{2}+x=0 \\
& \Longleftrightarrow x\left(x^{2}-2 x+1\right)=0 \\
& \Longleftrightarrow x(x-1)^{2}=0 \\
& \Longleftrightarrow x=0, \text { or } x=1
\end{aligned}
$$

The y-intercept is the origin $(0,0)$.
We next examine the end behavior of $g(x)$:

$$
\lim _{x \rightarrow-\infty} g(x)=-\infty, \quad \lim _{x \rightarrow \infty} g(x)=\infty,
$$

Next we calculate the critical points of g. Since g is differentiable everywhere the only critical points will be the zeros of the fist derivative. We have:

$$
g^{\prime}(x)=3 x^{2}-4 x+1
$$

So:

$$
\begin{aligned}
g^{\prime}(x)=0 & \Longleftrightarrow 3 x^{2}-4 x+1=0 \\
& \Longleftrightarrow x=\frac{4 \pm \sqrt{4}}{6} \\
& \Longleftrightarrow x=1, \text { or } x=\frac{1}{3}
\end{aligned}
$$

Next we calculate the critical points of g^{\prime}. Since g^{\prime} is differentiable everywhere the critical points of g^{\prime} are the zeros of $g^{\prime \prime}$. We have:

$$
g^{\prime \prime}(x)=6 x-4
$$

So

$$
g^{\prime \prime}(x)=0 \Longleftrightarrow x=\frac{2}{3}
$$

Now we construct a table that shows the signs of g^{\prime} and $g^{\prime \prime}$, and the behavior of g :

Figure 1: The graph of $y=x^{3}-2 x^{2}+x$

Putting all this information together we have the following graph in Figure 1 for $g(x)$.
From this we get the graph in Figure 2 for $f(x)=|g(x)|$
4. Sketch a graph of the function

$$
f(x)=\cos x-\sin x
$$

The graph should correctly indicate x and y intercepts, local extrema, points of inflection, the intervals where f is increasing or decreasing, and the intervals where f is concave upwards or downwards.

Answer. This is a periodic function with period 2π, so we'll only analyze it in the interval $[0,2 \pi]$. We start by finding the x-intercepts:

$$
\begin{aligned}
f(x)=0 & \Longleftrightarrow \cos x-\sin x=0 \\
& \Longleftrightarrow \cos x=\sin x \\
& \Longleftrightarrow \tan x=1 \\
& \Longleftrightarrow x=\frac{\pi}{4}, \text { or } x=\frac{5 \pi}{4}
\end{aligned}
$$

Figure 2: The graph of $y=\left|x^{3}-2 x^{2}+x\right|$
Next we find the critical points of f. We have:

$$
f^{\prime}(x)=-\sin x-\cos x
$$

So we have:

$$
\begin{aligned}
f^{\prime}(x)=0 & \Longrightarrow-\sin x-\cos x=0 \\
& \Longrightarrow \sin x=-\cos x \\
& \Longleftrightarrow \tan x=-1 \\
& \Longrightarrow x=\frac{3 \pi}{4}, \text { or } x=\frac{7 \pi}{4}
\end{aligned}
$$

Next we find the critical points of f^{\prime}, that is the zeros of $f^{\prime \prime}$:

$$
f^{\prime \prime}(x)=-\cos x+\sin x
$$

So we have:

$$
\begin{aligned}
f^{\prime}(x)=0 & \Longrightarrow-\cos x+\sin x=0 \\
& \Longrightarrow \cos x=\sin x \\
& \Longleftrightarrow \tan x=1 \\
& \Longrightarrow x=\frac{\pi}{4}, \text { or } x=\frac{5 \pi}{4}
\end{aligned}
$$

We next make a table of values for f :

x	$f(x)$
0	$\cos 0-\sin 0=1$
$\frac{\pi}{4}$	$\cos \frac{\pi}{4}-\sin \frac{\pi}{4}=0$
$\frac{3 \pi}{4}$	$\cos \frac{3 \pi}{4}-\sin \frac{3 \pi}{4}=-\sqrt{2}$
$\frac{5 \pi}{4}$	$\cos \frac{5 \pi}{4}-\sin \frac{5 \pi}{4}=0$
$\frac{7 \pi}{4}$	$\cos \frac{7 \pi}{4}-\sin \frac{\pi}{4}=\sqrt{2}$
2π	$\cos 2 \pi-\sin 2 \pi=1$

Now we construct the table of signs:

where to find the sign of f^{\prime} we used as test-points the values $0, \frac{\pi}{4}, \frac{5 \pi}{4}$, and 2π. To get the sign of $f^{\prime \prime}$ we used the test-points $0, \frac{3 \pi}{4}, \frac{7 \pi}{4}$, and 2π.
So for $0 \leq x \leq 2 \pi$ we have the graph of Figure 3

Figure 3: The graph of $y=\cos x-\sin x$ on the interval $[0,2 \pi]$

Since f is periodic with period 2π the graph will repeat at intervals of length 2π.

Figure 4: The graph of $y=\cos x-\sin x$
5. Sketch a graph of the function

$$
f(x)=\frac{x^{2}-4}{x^{2}-1}
$$

The graph should correctly indicate x and y intercepts, local extrema, points of inflection, the intervals where f is increasing or decreasing, the intervals where f is concave upwards or downwards, and any horizontal or vertical asymptotes.

Answer. The domain of f is $\{x: x \neq 1$ and $x \neq-1\}$. We notice that f is an even function, so we'll concentrate on the graph of $y=f(x)$ for $x \geq 0$.
The y-intercept of $y=f(x)$ is at $f(0)=4$.
We then find the x-intercepts:

$$
\begin{aligned}
f(x)=0 & \Longleftrightarrow \frac{x^{2}-4}{x^{2}-1}=0 \\
& \Longleftrightarrow x^{2}-4=0 \\
& \Longleftrightarrow x=-2 \text { or } x=2
\end{aligned}
$$

Next we find the end behavior; by symmetry we only look at $x \rightarrow \infty$:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} f(x) & =\lim _{x \rightarrow \infty} \frac{x^{2}-4}{x^{2}-1} \\
& =\lim _{x \rightarrow \infty} \frac{1-\frac{4}{x^{2}}}{1-\frac{1}{x^{2}}} \\
& =\frac{1-0}{1-0} \\
& =1
\end{aligned}
$$

Thus the line $y=1$ is a horizontal asymptote.
Next we look at the behavior near the points where f is not defined. Again by symmetry we only look at the behavior near $x=1$. We have

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} \frac{x^{2}-4}{x^{2}-1}=\frac{1-4}{0^{-}}=\infty
$$

and

$$
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} \frac{x^{2}-4}{x^{2}-1}=\frac{1-4}{0^{+}}=-\infty
$$

So the line $x=1$ is a vertical asymptote.
Next we find the intervals where f is increasing or decreasing and the intervals where the graph is concave upwards or downwards. We have:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{2 x\left(x^{2}-1\right)-\left(x^{2}-4\right) 2 x}{\left(x^{2}-1\right)^{2}} \\
& =\frac{2 x^{3}-2 x-2 x^{3}+8 x}{\left(x^{2}-1\right)^{2}} \\
& =\frac{6 x}{\left(x^{2}-1\right)^{2}}
\end{aligned}
$$

We notice that the derivative exists for all x in the domain of f, therefore the critical points of f are the solutions to:

$$
\begin{aligned}
f^{\prime}(x)=0 & \Longleftrightarrow \frac{6 x}{\left(x^{2}-1\right)^{2}}=0 \\
& \Longleftrightarrow 6 x=0 \\
& \Longleftrightarrow x=0
\end{aligned}
$$

Next we look at the second derivative:

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{6\left(x^{2}-1\right)^{2}-6 x \cdot 2\left(x^{2}-1\right) 2 x}{\left(x^{2}-1\right)^{4}} \\
& =\frac{6\left(x^{2}-1\right)-6 x \cdot 2 \cdot 2 x}{\left(x^{2}-1\right)^{3}} \\
& =\frac{-18 x^{2}-6}{\left(x^{2}-1\right)^{3}} \\
& =-\frac{6\left(3 x^{2}+1\right)}{\left(x^{2}-1\right)^{3}}
\end{aligned}
$$

We notice that the second derivative exists for all x in the domain of f so that the critical points of f^{\prime} are the solutions to

$$
\begin{aligned}
f^{\prime \prime}(x)=0 & \Longleftrightarrow-\frac{6\left(3 x^{2}+1\right)}{\left(x^{2}-1\right)^{3}}=0 \\
& \Longleftrightarrow 3 x^{2}+1=0
\end{aligned}
$$

Since the last equation has no real solutions the first derivative has no critical points.
Now we find the sign of f^{\prime} and $f^{\prime \prime}$. We have the following table:

So we have the graph of Figure 5 for $y=f(x)$ on $[0, \infty)$: Since f is even its graph is symmetric with respect to the y-axis. So we have the graph of Figure 6 for $y=f(x)$:

Figure 5: The graph of $y=\frac{x^{2}-4}{x^{2}-1}$ for $x \geq 0$

Figure 6: The graph of $y=\frac{x^{2}-4}{x^{2}-1}$

