1 Some commonly occurring angles

θ	$\sin \theta$	$\cos \theta$	$\tan \theta$
0	0	1	0
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
$\frac{\pi}{2}$	1	0	undefined

2 Arcs in the unit circle

If we start with an arc θ in the first quadrant, then in the counterclockwise direction the arc symmetric with respect to the sine axis is $\pi-\theta$, the arc symmetric to that with respect to the cosine axis is $\pi+\theta$, and finally the arc symmetric to that with respect to the sine axis is $2 \pi-\theta$. Going in the counterclockwise direction the arc symmetric to θ with respect to the cosine axis is $-\theta$, the arc symmetric to that with respect to the sine axis is $\theta-\pi$, and the arc symmetric to that with respect to the cosine axis is $-\pi-\theta$.

Points in the circle that are in the same horizontal line have the same sine and opposite cosines; points that are on the same vertical line have the same cosine and opposite sines. Also antidiametrical points on the circle (i.e. θ and $\pi+\theta$) have the same tangent and cotangent but opposite sines and cosines.

$$
\begin{array}{ll}
\sin (\pi-\theta)=\sin (\theta) & \sin (-\pi-\theta)=\sin (\theta) \\
\cos (\pi-\theta)=-\cos (\theta) & \cos (-\pi-\theta)=-\cos (\theta) \\
\sin (\pi+\theta)=-\sin (\theta) & \sin (\theta-\pi)=-\sin (\theta) \\
\cos (\pi+\theta)=-\cos (\theta) & \cos (\theta-\pi)=-\cos (\theta) \\
\sin (2 \pi-\theta)=-\sin (\theta) & \sin (-\theta)=-\sin (\theta) \\
\cos (2 \pi-\theta)=\cos (\theta) & \cos (-\theta)=\cos (\theta)
\end{array}
$$

3 Exercises

1. Calculate the following. Give exact answers whenever possible.
(a) $\sin ^{-1}\left(\frac{1}{2}\right)$
(b) $\cos ^{-1}\left(-\frac{\sqrt{2}}{2}\right)$
(c) $\cos \left(\sin ^{-1}\left(\frac{3 \sqrt{11}}{10}\right)\right)$
(d) $\tan \left(\cos ^{-1}(-0.4)\right)$
(e) $\cos ^{-1}\left(\cos \left(\frac{23 \pi}{6}\right)\right)$
(f) $\sin ^{-1}\left(\sin \left(\frac{5 \pi}{4}\right)\right)$
(g) $\sin ^{-1}\left(\sin \left(\frac{2 \pi}{3}\right)\right)$
(h) $\cos ^{-1}\left(\cos \left(\frac{5 \pi}{6}\right)\right)$
2. Give all solutions of the following equations in the interval $[0,2 \pi)$.
(a) $\sin x=-\frac{\sqrt{3}}{2}$
(b) $\cos x=\frac{\sqrt{2}}{2}$
(c) $\sin x=\frac{1}{2}$
(d) $\cos x=-\frac{1}{2}$
(e) $\sin x=\frac{1}{3}$
(f) $4 \cos ^{2} x-3=0$
(g) $2 \sin ^{2} x+\sin x=0$
(h) $2 \sin ^{2} x+\sin x-1=0$
(i) $4 \cos ^{3} x=\cos x$
(j) $9 \sin ^{4} x-8 \sin ^{2} x=1$
3. Find all solutions of the equations of the previous exercise in the interval $(-\pi, \pi]$.
