Homework on Polynomial Functions II

Nikos Apostolakis

Please note: You should fully justify your answers.

1. What is the remainder of the following division?

$$
\frac{4 x^{100}-32 x^{41}+x+7}{x+1}
$$

2. Solve the following polynomial equations.
(a) $x^{3}+6 x^{2}-x-30=0$
(b) $x^{3}-5 x-12=0$
(c) $x^{4}+3 x^{3}-16 x^{2}+19 x-7=0$
(d) $x^{3}+9 x^{2}+27 x+27=0$
(e) $3 x^{3}-x^{2}+3 x-1=0$
(f) $x^{4}+x^{3}-7 x^{2}-x+6=0$
(g) $x^{4}+x^{3}-11 x^{2}+9 x-180=0$
(h) $x^{5}-x^{4}-5 x^{3}+x^{2}+8 x+4=0$
(i) $x^{4}-7 x^{3}+13 x^{2}+3 x-18=0$
(j) $x^{8}-2 x^{7}-9 x^{6}+12 x^{5}+27 x^{4}-18 x^{3}-31 x^{2}+8 x+12=0$
(k) $6 x^{3}+41 x^{2}-8 x-7=0$
(l) $10 x^{4}+29 x^{3}-15 x^{2}-5 x+2=0$
(m) $12 x^{4}+92 x^{3}+43 x^{2}-88 x+21=0$
(n) $10 x^{6}-19 x^{5}+6 x^{4}-10 x^{2}+19 x-6=0$
3. Sketch a rough graph for each of the following polynomial functions. The graph should correctly reflect the end behavior, the behavior near x-intercepts and the number of turning points. The y-intercept should also be correctly marked.
(a) $p(x)=x^{4}+4 x^{3}+6 x^{2}+4 x+1$
(b) $g(x)=x^{3}-6 x^{2}+12 x-8$
(c) $h(x)=6 x^{3}-x^{2}-11 x+6$
(d) $k(x)=x^{4}-11 x^{2}+24$
(e) $f(x)=-2 x^{4}+4 x^{3}+22 x^{2}-24 x-72$
(f) $f(x)=x^{5}+2 x^{4}-6 x^{3}-8 x^{2}+5 x+6$
(g) $g(x)=x^{4}-5 x^{3}+x^{2}+21 x-18$
4. Solve the following inequalities: (you may use the results from the previous exercise).
(a) $x^{5}+2 x^{4}-6 x^{3}-8 x^{2}+5 x+6 \leq 0$
(b) $x^{3}-6 x^{2}+12 x-8 \geq 0$
(c) $x^{4}-5 x^{3}+x^{2}+21 x-18<0$
(d) $-2 x^{4}+4 x^{3}+22 x^{2}-24 x-72>0$
(e) $x^{4}+4 x^{3}+6 x^{2}+4 x+1 \leq 0$
5. Find a fourth degree polynomial with real coefficients with roots at $x=1-2 i$ and $x=3 i$.
6. For each of the following lists of properties, give an example of a polynomial $p(x)$ that has all of the properties.
(a) The degree of $p(x)$ is 3 and its graph intercepts the x-axis at the points $x=0, x=1$ and $x=3$. Additionally as $x \rightarrow \infty, p(x) \rightarrow-\infty$.
(b) The degree of $p(x)$ is 3 . The zeros of $p(x)$ are $-1,2,3$ and its constant term is 12 .
(c) The only x-intercepts of $y=p(x)$ are $x=-3, x=1$, and $x=2$. As $x \rightarrow \infty, p(x) \rightarrow \infty$ and as $x \rightarrow-\infty, p(x) \rightarrow \infty$. The y-intercept of $y=p(x)$ is at $y=18$.
(d) The solution set of the inequality $p(x)<0$ is empty and the polynomial has exactly two real roots $x=1$ and $x=-1$. Additionally the leading coefficient is 4 and the constant term is 8 .
7. Prove that a polynomial with real coefficients and odd degree has at least one real root.
8. For each of the following real numbers a
9. Find a polynomial with integer coefficients that has a as a root.
10. Prove that a is irrational.
(a) $a=\sqrt{11}$
(b) $a=\sqrt[5]{4}$
(c) $a=2-\sqrt{3}$
(d) $a=\sqrt{3}-\sqrt{2}$
11. All the roots of the following equation are rational numbers:

$$
x^{5}+a x^{4}+b x^{3}+c x-5
$$

where a, b, c are integers. Prove that this equation has at least one multiple root.

