BRONX COMMUNITY COLLEGE

of the City University of New York

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

MATH 30
Nikos Apostolakis

Exam 1
October 20, 2011

The Answers

1. For the function f whose graph is shown bellow, find:
(a) The domain of f.

Answer. $[6,7)$
(b) The range of f.

Answer. $[-7,8]$
(c) The intervals where f is increasing.

Answer. $[-3,2]$ and $[5,7)$
(d) The intervals where f is decreasing.

Answer. $[-6,-3]$ and $[2,4]$.

2. Find the domain of each of the following functions:
(a) $f(x)=\sqrt{3-6 x}$

Answer. Only non-negative numbers have (real) square roots. So in order for f to be defined we need $3-6 x \geq 0$, or equivalently, $3 \geq 6 x$, or, $\frac{1}{2} \geq x$. Thus the domain of f is $\left(-\infty, \frac{1}{2}\right]$.
(b) $g(x)=\frac{2 x-1}{x^{2}-x-12}$

Answer. We need the denominator to be non-zero. The denominator factors as

$$
x^{2}-x-12=(x+3)(x-4)
$$

so in order for the denominator to be non-zero we need $x \neq-3$ and $x \neq 4$. Thus the domain of g is

$$
(-\infty,-3) \cup(-3,4) \cup(4, \infty)
$$

3. For the function $f(x)=\frac{x+3}{2 x-1}$ find
(a) The formula for the inverse function f^{-1}.

Answer. As a relation f is given by:

$$
f: y=\frac{x+3}{2 x-1}
$$

so the f^{-1} as a relation is given by

$$
f^{-1}: x=\frac{y+3}{2 y-1}
$$

To find the formula of the inverse function we solve the last equation for y :

$$
\begin{aligned}
x=\frac{y+3}{2 y-1} & \Longleftrightarrow x(2 y-1)=y+3 \\
& \Longleftrightarrow 2 x y-x=y+3 \\
& \Longleftrightarrow 2 x y-y=x+3 \\
& \Longleftrightarrow(2 x-1) y=x+3 \\
& \Longleftrightarrow y=\frac{x+3}{2 x-1}
\end{aligned}
$$

Thus we have the formula:

$$
f^{-1}(x)=\frac{x+3}{2 x-1}
$$

(b) The domain of f^{-1}.

Answer. From the formula of f^{-1} we see that its domain is

$$
\left(-\infty, \frac{1}{2}\right) \cup\left(\frac{1}{2}, \infty\right)
$$

(c) The range of f^{-1}.

Answer. The range of f^{-1} is the same as the domain of f. From the formula of f we see that its domain is

$$
\left(-\infty, \frac{1}{2}\right) \cup\left(\frac{1}{2}, \infty\right)
$$

Therefore the range of f^{-1} is

$$
\left(-\infty, \frac{1}{2}\right) \cup\left(\frac{1}{2}, \infty\right)
$$

Remark. In Question 3, f^{-1} turned out to be the same as f, so f is an involution. Of course then the domain and range of f^{-1} turned out to be the same.
4. Let $f(x)=\frac{2 x-3}{5 x+1}$ and $g(x)=\frac{1}{x}$. Find:
(a) The formula for $f \circ g$.

Answer. We have:

$$
\begin{aligned}
(f \circ g)(x) & =f(g(x)) \\
& =\frac{2 \frac{1}{x}-3}{5 \frac{1}{x}+1} \\
& =\frac{2-3 x}{5+x}
\end{aligned}
$$

(b) The domain of $f \circ g$.

Answer. In order for x to be in the domain of $f \circ g$ we need tow conditions

1. x has to be in the domain of g.
2. $g(x)$ has to be in the domain of f.

In order for x to be in the domain of g we need $x \neq 0$, so the first condition is satisfied when $x \neq 0$. In order for $g(x)$ to be in the domain of f we need $5+x \neq 0$, or equivalently $x \neq-5$.
In sum, in order for x to be in the domain of $f \circ g$ we need $x \neq 0$ and $x \neq-5$. Therefore the domain of $f \circ g$ is

$$
(-\infty,-5) \cup(-5,0) \cup(0, \infty)
$$

5. Verify that $f(x)=\sqrt[3]{x+1}$ and $g(x)=x^{3}-1$ are a pair of inverse functions.

Answer. We need to verify that

1. $f(g(x))=x$ for all x in the domain of g
2. $g(f(x)=x)$ for all x in the domain of f

The domain of g is \mathbb{R}, the set of all real numbers; we have:

$$
\begin{aligned}
f(g(x)) & =\sqrt[3]{\left(x^{3}-1\right)+1} \\
& =\sqrt[3]{x^{3}} \\
& =x
\end{aligned}
$$

The domain of f is \mathbb{R}, the set of all real numbers; we have:

$$
\begin{aligned}
g(f(x)) & =(\sqrt[3]{x+1})^{3}-1 \\
& =(x+1)-1 \\
& =x
\end{aligned}
$$

Thus, f and g are a pair of inverse functions.
6. Given that $x=-2$ is a solution of the following equation:

$$
x^{3}+4 x^{2}+5 x+2=0
$$

solve the equation completely.
Answer. Since $x=-2$ is a zero, $x+2$ is a factor of the polynomial $x^{3}+4 x^{2}+5 x+2$. We perform the division to find the factorization:

$$
\begin{gathered}
\begin{array}{l}
x^{3}+4 x^{2}+5 x+2=(x+2)\left(x^{2}+2 x+1\right) \\
-x^{3}-2 x^{2} \\
\hline 2 x^{2}+5 x \\
-2 x^{2}-4 x \\
\frac{-x-2}{0}
\end{array}
\end{gathered}
$$

So the given equation is equivalent to

$$
(x+2)\left(x^{2}+2 x+1\right)=0
$$

which is equivalent to

$$
x+2=0 \text { or } x^{2}+2 x+1=0
$$

which is equivalent to

$$
x=-2 \text { or }(x+1)^{2}=0
$$

which is equivalent to

$$
x=-2 \text { or } x=-1 \text { or } x=-1
$$

So the roots are $x=-2$ and $x=-1$, a double root.
7. Let $f(x)=(x+2)(x+1)^{2}(1-x)(x-2)^{2}$.
(a) Sketch a rough but qualitatively accurate graph of $y=f(x)$. The graph should correctly indicate the x and y intercepts, the end behavior, and the behavior near the roots of the function.

Answer. The leading term of $f(x)$ is $x \cdot x^{2} \cdot(-x) \cdot x^{2}=-x^{6}$. Thus for the end behavior of f we have that as $x \rightarrow-\infty, f(x) \rightarrow-\infty$ and as $x \rightarrow \infty, f(x) \rightarrow-\infty$.
f has single roots at $x=-2$ and $x=1$ and double roots at $x=-1$ and $x=2$.
The y-intercept is at $f(0)=2 \cdot 1^{2} \cdot 1 \cdot(-2)^{2}=8$.
In sum we have the graph in Figure 1.
(b) Solve the inequality $(x+2)(x+1)^{2}(1-x)(x-2)^{2}<0$

Answer. Examining the graph of f we see that $f(x)$ is negative for x in $(-\infty,-2) \cup(1,2) \cup(2, \infty)$.
8. Find a fourth degree polynomial that has a double root at $x=1$, and single roots at $x=2$ and $x=-1$.

Figure 1: The graph in Question 7(a)

Answer. Such a polynomial has factors $(x-1)^{2},(x-2)$, and $(x+1)$. So the following polynomial works:

$$
\begin{aligned}
(x-1)^{2}(x-2)(x+1) & =\left(x^{2}-2 x+1\right)\left(x^{2}-x-2\right) \\
& =x^{4}-x^{3}-2 x^{2}-2 x^{3}+2 x^{2}+4 x+x^{2}-x-2 \\
& =x^{4}-3 x^{3}+x^{2}+3 x-2
\end{aligned}
$$

