Seventeenth Set of Homework for Math 05

Nikos Apostolakis

Please note: You should fully justify your answers.

1 Using the quadratic formula

Solve each of the following equations using the quadratic formula.

1. $x^{2}+4 x-21=0 \quad x=3, \quad x=-7$
2. $x^{2}-3 x-2=0 \quad \frac{3 \pm \sqrt{17}}{2}$
3. $x^{2}-5=0 \quad x= \pm \sqrt{5}$
4. $x^{2}+3 x=0 \quad x=-3, x=0$
5. $4 x^{2}-3 x+7=0 \quad$ No real solutions
6. $12 x^{2}+4 x=1 \quad x=\frac{1}{6}, x=-\frac{1}{2}$
7. $12 x^{2}+13 x-4=0 \quad x=-\frac{4}{3}, x=\frac{1}{4}$
8. $5 x^{2}+3 x=11 \quad x=\frac{3 \pm \sqrt{229}}{10}$
9. $-2 x^{2}-7 x+3=0 \quad x=-\frac{7 \pm \sqrt{73}}{4}$
10. $24 x^{2}-5 x+5=3 x+20 \quad x=\frac{2 \pm \sqrt{94}}{12}$
11. $8 x^{2}-11 x-13=3 x^{2}-15 x-8 \quad x=\frac{2 \pm \sqrt{29}}{5}$

2 The meaning of discriminant

1. Find the real nuber b so that the following equation:

$$
\begin{array}{lc}
& 9 x^{2}+b x+25=0 \\
\text { has exactly one (double) real solution. } & b= \pm 30
\end{array}
$$

2. For which real numbers a the equation $a x^{2}-4 x+7=0$ has real solutions? $\quad a<\frac{4}{7}$
3. For which real numbers c the equation:

$$
3 x^{2}-5 x+c=0
$$

has no real solutions? $\quad c<\frac{25}{12}$
4. Find the real number a if the equation: $a x^{2}-12 x+2 a+1=0$ has a double solution. $\quad a=4$ or $a=-\frac{9}{2}$

