Seventeenth Set of Homework for Math 05

Nikos Apostolakis

Please note: You should fully justify your answers.

1 Using the quadratic formula

Solve each of the following equations using the quadratic formula.

1. $x^{2} + 4x - 21 = 0$ x = 3, x = -72. $x^{2} - 3x - 2 = 0$ $\frac{3 \pm \sqrt{17}}{2}$ 3. $x^{2} - 5 = 0$ $x = \pm \sqrt{5}$ 4. $x^{2} + 3x = 0$ x = -3, x = 05. $4x^{2} - 3x + 7 = 0$ No real solutions 6. $12x^{2} + 4x = 1$ $x = \frac{1}{6}, x = -\frac{1}{2}$ 7. $12x^{2} + 13x - 4 = 0$ $x = -\frac{4}{3}, x = \frac{1}{4}$ 8. $5x^{2} + 3x = 11$ $x = \frac{3 \pm \sqrt{229}}{10}$ 9. $-2x^{2} - 7x + 3 = 0$ $x = -\frac{7 \pm \sqrt{73}}{4}$ 10. $24x^{2} - 5x + 5 = 3x + 20$ $x = \frac{2 \pm \sqrt{94}}{12}$ 11. $8x^{2} - 11x - 13 = 3x^{2} - 15x - 8$ $x = \frac{2 \pm \sqrt{29}}{5}$

2 The meaning of discriminant

1. Find the real nuber b so that the following equation:

$$9x^2 + bx + 25 = 0$$

has exactly one (double) real solution. $b = \pm 30$

2. For which real numbers a the equation $ax^2 - 4x + 7 = 0$ has real solutions? $a < \frac{4}{7}$

3. For which real numbers c the equation:

$$3x^2 - 5x + c = 0$$

has no real solutions? $c < \frac{25}{12}$

4. Find the real number *a* if the equation: $ax^2 - 12x + 2a + 1 = 0$ has a double solution. a = 4 or $a = -\frac{9}{2}$