Second Quiz for CSI35

Nikos Apostolakis

September 25, 2009

Directions: This quiz is due Thursday October 1, at 4:00 PM. Please *staple* all the papers of your answer together.

- 1. In Nevereverland they have only stamps worth 5 or 7 cents. Prove that a nevereverlander can send any letter that costs 24 cents or more.
- 2. The Fina Bocci company breeds worms for fishing. After each worm is two weeks old they cut off its tail which becomes a new worm. The tail grows back in a week, so once a worm becomes two weeks old it produces a new worm every week.
 - (a) Assuming that no worm ever dies and that the company starts with one newly "born" worm, find a recursive formula for the the number of worms after n weeks.
 - (b) Prove that the formula you found in part a) is correct.
- 3. For an integer n let g_n be the number of ways that n can be written as a sum of ones, twos, or threes, where the order that the summands are written is important. For example, g(1) = 1, g(2) = 2 since 2 can be written either as 2 or as 1 + 1, and g(3) = 4 because 3 can be written as 1 + 1 + 1 or as 1 + 2 or as 2 + 1 or 3.
 - (a) Find a recursive definition of g(n)
 - (b) Prove that this recursive definition is correct.

For the next three questions f_n stands for the *n*th Fibonacci number.

4. Show that for all $n \in \mathbb{N}$

$$f_{n-1}f_{n+1} - f_n^2 = (-1)^n$$

- 5. Let $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$. Prove that for all $n \ge 1$, $A^n = \begin{pmatrix} f_{n+1} & f_n \\ f_n & f_{n-1} \end{pmatrix}$.
- 6. Let $\varphi = \frac{1+\sqrt{5}}{2}, \ \bar{\varphi} = \frac{1-\sqrt{5}}{2}.$ (a) Prove that $\forall n \in \mathbb{N} \quad \varphi^n = f_{n-1} + f_n \varphi \text{ and } \bar{\varphi}^n = f_{n-1} + f_n \bar{\varphi}.$

(b) Prove that

$$\forall n \in \mathbb{N} \quad f_n = \frac{\varphi^n - \bar{\varphi}^n}{\sqrt{5}}$$

For the next four questions recall that if $\Sigma = \{0, 1\}$ then the elements of Σ^* , i.e. the words on the alphabet Σ , are called *bit strings*.

- 7. The mirror of a bitstring s is a bitstring m(s) that has the same length as s and differs in every bit from s. For example the mirror of 1010001 is 0101110. Give a recursive definition of m(s) for a bitstring s.
- 8. Consider the following recursive definition of a set of bitstrings MW.
 - $\emptyset \in MW$, where \emptyset stands for the empty bitstring.
 - If $b \in MW$ then $0b1 \in MW$ and $1b0 \in MW$.

Give a non-recursive description of the bitstrings in MW.

- 9. The reverse of a string s is the string obtained by "reading s backwards", for example the reverse of the string "sub" is "bus". The reverse of a string s is denoted by s^R . Give a recursive definition of s^R , for bit strings s.
- 10. A *palindrome* is a string s such that $s^R = s$, in other words a string that reads the same when we read it backwards. For example the string "bob" is a palindrome.
 - (a) Give a recursive definition of the set Π of all bitstrings that are palindromes.
 - (b) For a natural number n, how many bitstring palindromes of length n are there? Prove your answer.