First Quiz for CSI35

Nikos Apostolakis

September 15, 2009

Directions: This quiz is due Tuesday September 15, at 4:00 PM.

1. Prove that for all natural numbers we have:

$$
\sum_{i=0}^{n} i^{3}=\left(\frac{n(n+1)}{2}\right)^{2}
$$

2. By experimenting with the first few values of n conjecture a formula for the sum of the first $n+1$ even natural numbers. That is, conjecture a formula for

$$
\sum_{i=0}^{n} 2 i
$$

Then prove your conjecture using mathematical induction.
3. (a) Prove that for all positive integers $n, 5$ divides $n^{5}-n$.
(b) Is it true that for all positive $n, 4$ divides $n^{4}-n$?
4. Prove that for all $n \geq 1$ we have:

$$
\frac{1}{2}+\frac{2}{2^{2}}+\frac{3}{2^{3}}+\cdots+\frac{n}{2^{n}}=2-\frac{n+2}{2^{n}}
$$

5. Alice and Bob play a game by taking turns removing 1 or 2 stones from a pile that initially has n stones. The person that removes the last stone wins the game. Alice plays always first.
(a) Prove by induction that if n is a multiple of 3 then Bob has a wining strategy.
(b) Prove that if n is not a multiple of 3 then Alice has a wining strategy.
6. Chris and Dominique play a slightly different game. Again each player takes turns removing 1 or 2 stones from a pile that initially has n stones but now, the person that removes the last stone loses the game. Chris plays always first. Analyze this game, that is, find the values of n for which Chris has a winning strategy and the values of n for which Dominique has a winning strategy. You should prove your result.
7. Prove that for all $n \in \mathbb{N}$,

$$
\left(\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right)^{n}=\left(\begin{array}{ccc}
a^{n} & 0 & 0 \\
0 & b^{n} & 0 \\
0 & 0 & c^{n}
\end{array}\right)
$$

8. Prove that for all $n \in \mathbb{N}$,

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)^{n}=\left(\begin{array}{ll}
1 & n \\
0 & 1
\end{array}\right)
$$

9. Experiment with the first few values of $n \in \mathbb{N}$ to conjecture a formula for the value of

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)^{n}
$$

Then prove your conjecture using mathematical induction.

Page 2

