
First Quiz for CSI35

Nikos Apostolakis

September 15, 2009

Directions: This quiz is due Tuesday September 15, at 4:00PM.

1. Prove that for all natural numbers we have:
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2. By experimenting with the first few values of n conjecture a formula for the sum of the
first n + 1 even natural numbers. That is, conjecture a formula for

n
∑

i=0

2i .

Then prove your conjecture using mathematical induction.

3. (a) Prove that for all positive integers n, 5 divides n
5 − n.

(b) Is it true that for all positive n, 4 divides n
4 − n?

4. Prove that for all n ≥ 1 we have:
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5. Alice and Bob play a game by taking turns removing 1 or 2 stones from a pile that
initially has n stones. The person that removes the last stone wins the game. Alice
plays always first.

(a) Prove by induction that if n is a multiple of 3 then Bob has a wining strategy.

(b) Prove that if n is not a multiple of 3 then Alice has a wining strategy.

6. Chris and Dominique play a slightly different game. Again each player takes turns
removing 1 or 2 stones from a pile that initially has n stones but now, the person that
removes the last stone loses the game. Chris plays always first. Analyze this game, that
is, find the values of n for which Chris has a winning strategy and the values of n for
which Dominique has a winning strategy. You should prove your result.
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7. Prove that for all n ∈ N,





a 0 0
0 b 0
0 0 c
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8. Prove that for all n ∈ N,
(
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9. Experiment with the first few values of n ∈ N to conjecture a formula for the value of





1 1 1
0 1 1
0 0 1





n

Then prove your conjecture using mathematical induction.
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