Midterm for CSI35

Nikos Apostolakis

October 27, 2009

Answer three of the following four questions. Be sure to indicate clearly which three questions you are answering.

1. Prove that for all natural numbers n we have:

$$
\sum_{i=0}^{n} i^{2}=\frac{n(n+1)(2 n+1}{6}
$$

2. Prove that for all positive integers $n, 7$ divides $n^{7}-n$.
3. Prove that for natural numbers $n \geq 7$ we have $3^{n}<n$!
4. Consider the following zero-one matrix:

$$
A=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right)
$$

Prove that $A^{n}=A$ for all natural numbers $n \geq 1$, where the power is with respect to the boolean product.

Answer one of the following two questions. Be sure to indicate clearly which question you are answering.
5. Alice and Bob play a game by taking turns removing up to 4 stones from a pile that initially has n stones. The person that removes the last stone wins the game. Alice plays always first. For which values of n does Alice have a winning strategy? For which values of n does Bob have a winning strategy? Prove your answer.
6. In Nevereverland chicken nuggets come in packages of 3 and 5. Prove that for $n \geq 8$ a Nevereverlander can combine packages to get a total of exactly n chicken nuggets.

Answer one of the following two questions. Be sure to indicate clearly which question you are answering.
7. Let g_{n} be the number of bitstrings of length n with no consecutive ones. Give a recursive formula for g_{n} and prove your answer.
8. For an integer n let c_{n} be the number of ways that n can be written as a sum of ones, twos, threes, or fours where the order that the summands are written is important. Find a recursive definition of c_{n} and prove your answer.

Answer one of the following two questions. Be sure to indicate clearly which question you are answering.
9. A Morse code is a word in the alphabet consisting of two letters, the dot "." and the dash "-". The two letters have different length, the dot has length 1 while the dash has length 2.
(a) Give a recursive definition of the set of Morse codes M.
(b) Give a recursive definition of the length $l(s)$ of a Morse code s.
(c) Give a recursive formula for the number of Morse codes of length n. Prove this recursive formula.
10. On the set Σ^{*} of words from the alphabet $\Sigma=\{I, M, W\}$ define the flip $F(s)$ of a word s as follows:

- $F(\emptyset)=\emptyset$, where \emptyset is the empty word
- For a word $s, F(s I)=F(s) I, F(s W)=F(s) M$, and $F(s M)=F(s) W$

Call a word flippant if $F(s)=R(s)$, where $R(s)$ stands for the reverse of s. For example, MIW is a flippant word.
(a) Give a recursive definition for the set of flippant words.
(b) How many flippant words of length n are there? Give a formula and prove it.

Answer both of the following questions. These questions refer to the digraphs G_{1} and G_{2} shown bellow:

G_{1}

G_{2}
11. Answer the following questions for $i=1,2$:
(a) Is G_{i} reflexive?
(b) Is G_{i} irreflexive?
(c) Is G_{i} symmetric?
(d) Is G_{i} transitive?
12. Draw the digraph $\mathrm{G}_{2} \circ \mathrm{G}_{1}$.

The following two questions are for extra credit. Do only one of them (if at all).
13. What is the last digit of 2009^{2009} ?
14. Prove that 7 divides $5555^{2222}+2222^{5555}$.

