
Answers to the Midterm for CSI35

Nikos Apostolakis

1. Prove that for all natural numbers n we have:

n
∑

i=0

i2 =
n(n + 1)(2n + 1

6

Answer. We pro
eed by indu
tion. For n = 0 we have the statement

0
∑

i=0

i2 =
0(0 + 1)(2 · 0 + 1

6

whi
h is true sin
e both sides are evidently 0. This 
on
ludes the basi
 step.

For the indu
tive step, we assume that the senten
e has been proven for n and we will

prove it for n + 1. That is, we assume that,

n
∑

i=0

i2 =
n(n + 1)(2n + 1)

6

and we will prove that

n+1
∑

i=0

i2 =
(n + 1)(n + 1 + 1) (2(n + 1) + 1)

6
(1)

We start with the LHS of (1):

n+1
∑

i=0

i2 =

n
∑

i=0

i2 + (n + 1)2

=
n(n + 1)(2n + 1)

6
+ (n + 1)2

=
n(n + 1)(2n + 1) + 6(n + 1)2

6

=
(n + 1) (n(2n + 1) + 6(n + 1))

6

=
(n + 1) (n(2n + 1) + 6(n + 1))

6

=
(n + 1)

(

2n2 + 7n + 6
)

6

1



On the other hand, the RHS of (1) is:

(n + 1)(n + 1 + 1) (2(n + 1) + 1)

6
=

(n + 1)(n + 2)(2n + 3)

6

=
(n + 1)(2n2 + 7n + 6)

6

Therefore the two sides of (1) are equal. This 
on
ludes the proof of (1) and the

indu
tive step.

2. Prove that for all positive integers n, 7 divides n7 − n.

Answer. We pro
eed by indu
tion. The proposition is true when n = 1 sin
e 7 divides

0. For the indu
tive step, we assume that 7 divides n7 − n, that is we assume that

n7 − n = 7k for some natural number k, and we are going to prove that 7 divides

(n + 1)7 − (n + 1).

We use the binomial theorem to expand (n + 1)7. We have:

(n + 1)7 = n7 + 7n6 + 21n5 + 35n4 + 35n3 + 21n2 + 7n + 1

where the 
oeÆ
ients were 
omputed as follows:

(

7

0

)

=

(

7

7

)

= 1

(

7

1

)

=

(

7

6

)

= 7

(

7

2

)

=

(

7

5

)

=
7 · 6

2!
= 21

(

7

3

)

=

(

7

4

)

=
7 · 6 · 5

3!
= 35

So we have:

(n + 1)7 − (n − 1) = n7 + 7n6 + 21n5 + 35n4 + 35n3 + 21n2 + 7n + 1 − n − 1

= n7 − n + 7(n6 + 3n5 + 5n4 + 5n3 + 3n2 + n)

= 7k + 7(n6 + 3n5 + 5n4 + 5n3 + 3n2 + n)

= 7(k + n6 + 3n5 + 5n4 + 5n3 + 3n2 + n)

So 7 divides (n+1)7−(n+1), and this 
on
ludes the indu
tive step and the proof.

3. Prove that for natural numbers n ≥ 7 we have 3n < n!
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Answer. By indu
tion. For the basi
 step n = 7, we have: 37 = 2187 while 7! = 5040.

Therefore, 37 < 7!. This 
ompletes the basi
 step.

For the indu
tive step we assume that

3n < n! (2)

and we are going to prove that 3n+1 < (n + 1)! Indeed, sin
e n ≥ 7 we have that

3 < n + 1 (3)

Multiplying the inequalities (2) and (3) we get, sin
e all terms involved are positive:

3n · 3 < n! · (n + 1)

Or equivalently,

3n+1 < (n + 1)!

This 
ompletes the indu
tive step and the proof.

4. Consider the following zero-one matrix:

A =











0 0 0 0

0 1 1 1

0 1 1 1

0 1 1 1











Prove that An = A for all natural numbers n ≥ 1, where the power is with respe
t to

the boolean produ
t.

Answer. The proposition is obviously true for n = 1. For the indu
tive step we

assume

An = A

and we'll prove that

An+1 = A

Page 3



We have:

An+1 = An · A

= A · A

=











0 0 0 0

0 1 1 1

0 1 1 1

0 1 1 1











·











0 0 0 0

0 1 1 1

0 1 1 1

0 1 1 1











=











0 0 0 0

0 1 1 1

0 1 1 1

0 1 1 1











= A

This 
on
ludes the indu
tive step and the proof.

5. Ali
e and Bob play a game by taking turns removing up to 4 stones from a pile that

initially has n stones. The person that removes the last stone wins the game. Ali
e

plays always �rst. For whi
h values of n does Ali
e have a winning strategy? For

whi
h values of n does Bob have a winning strategy? Prove your answer.

Answer. We will prove that Bob has a winning strategy when n = 5k, for some

natural number k. For all other values of n Ali
e has a winning strategy.

To prove that for n = 5k Bob has a winning strategy, we pro
eed by indu
tion. For

k = 1, that is when there are n = 5 stones, Bob 
an win no matter what is Ali
e's

�rst move. Indeed, if Ali
e takes 1, Bob 
an take the remaining 4 stones and win, if

Ali
e takes 2, Bob 
an take the remaining 3 stones and win, if Ali
e takes 3, Bob 
an

take the remaining 2 stones and win, and if Ali
e takes 4, Bob 
an take the remaining

stone and win.

For the indu
tive step, we assume that Bob has a winning strategy when there are

n = 5k stones, and we'll prove that he has a strategy when n = 5(k+ 1) as well. Now,

5(k + 1) = 5k + 5 so no matter what Ali
e's �rst move is, Bob 
an ensure that after

his se
ond move there are 5k stones left. (Indeed, if Ali
e takes 1 stone Bob takes 4,

if Ali
e takes 2 Bob takes 3, if Ali
e takes 3 Bob takes 2 and when Ali
e takes 4 Bob

takes 1; this way after Bob's �rst move, 5 stones have been removed in total, leaving 5k

stones.) On
e there are 5k stones with Ali
e's turn to play, Bob 
an follow the strategy

guaranteed by the indu
tive hypothesis and win. This 
ompletes the indu
tive step.

Now if n is not a multiple of 5, it will leave remainder 1, 2, 3 or 4 when divided by

5. In other words, for some k we'll have n = 5k + 1, or n = 5k + 2, or n = 5k + 3, or

Page 4



n = 5k + 4; so in her �rst move Ali
e 
an take 1, or 2, or 3, or 4 respe
tively leaving

5k stones with Bob's turn to play. We proved in the previous paragraph that when

there 5k stones the se
ond player has a winning strategy. So on
e there are 5k stones

and Bob's turn to play, Ali
e 
an follow that strategy and win.

6. In Nevereverland 
hi
ken nuggets 
ome in pa
kages of 3 and 5. Prove that for n ≥ 8

a Nevereverlander 
an 
ombine pa
kages to get a total of exa
tly n 
hi
ken nuggets.

Answer. We will use strong indu
tion. The basi
 step is n = 8: We 
an get 8 nuggets

by using a pa
kage of three and a pa
kage of 5. This 
ompletes the basi
 step.

For the ind
utive step, we will assume that the statement is true for all integers k with

8 ≤ k < n and we will prove that it it is also true for n. In other words we will assume

that one 
an 
ombine pa
kages to get any number of nuggets k with 8 ≤ k < n and

prove that one 
an also get n nuggets by 
ombining pa
kages.

Indeed, if n is large enough so that n − 3 ≥ 8, i.e. if n ≥ 11, then by the indu
tive

hypothesis we 
an get n − 3 nuggets by 
ombining pa
kages, so we 
an get n nuggets

by just adding a pa
kage of 3. If n is not greater of equal than 11 it will be 8, 9, or 10.

We've already seen that we 
an get 8 nuggets. We 
an also get 9 by using 3 pa
kages

of 3 and we 
an get 10 nuggets by using 2 pa
kages of 5. So we 
an get any number

n ≥ 8 and this 
ompletes the indu
tive step and the proof.

7. Let gn be the number of bitstrings of length n with no 
onse
utive ones. Give a

re
ursive formula for gn and prove your answer.

Answer. The re
ursive formula is:

gn =















1 if n = 0

2 if n = 1

gn−1 + gn−2 if n > 1

This de�nition is 
orre
t for n = 0 be
ause the empty bitstring has no 
onse
utive

ones in it so we have one bitstring of length 0 with no 
onse
utive ones. When n = 2

we have two bitstrings 0, and 1 and none of them has 
onse
utive ones. So g1 = 2.

To make des
riptions brief, let us 
all a bitsring good if it has no 
onse
utive ones.

For n > 1, the set of good bitstrings length n is the union of two disjoint sets: those

that start with 0 and those that start with 1.

We 
an take any good bitstring of length n − 1 and preppend 0 to it to get a good

bitstring of length n starting with 0, therefore there are at least gn−1 good bitstrings

of length n starting with 0. On the other hand there are at most gn−1 good bitstrings

of length n starting with 0, sin
e if we delete the initial 0 from su
h a bitstring we get
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a good bitstring of length n − 1. It follows that there are exa
tly gn−1 good bistrings

of length n that start with 0.

If we take any good bitstring of length n − 2 and no 
onse
utive ones and prepend 10

to it we get a good bitstring of length n starting wiht 1. So there are at least gn−2

good bistrings of length n starting with 1. On the other hand, a good bitstring of

length n that starts with 1 a
tually has to start with 10, so we 
an delete the initial

two bits of any su
h bitstring to get a good bitstring of length n−2. Thus there are at

most gn−2 good bitstrings of length n starting with 1. It follows that there are exa
tly

gn−2 good bitsrings of length n that start with 1.

So we have, gn = gn−1 + gn−2 as needed.

8. For a positive integer n let cn be the number of ways that n 
an be written as a

sum of ones, twos, threes, or fours where the order that the summands are written is

important. Find a re
ursive de�nition of cn and prove your answer.

Answer. The re
ursive formula is:

cn =



































1 if n = 1

2 if n = 2

4 if n = 3

8 if n = 4

cn−1 + cn−2 + cn−3 + cn−4 if n > 4

The only way we 
an write 1 as a sum using 1, 2, 3 and 4 is simply

1 = 1

Therefore c1 = 1.

For n = 2 we have two ways:

2 = 1 + 1, or 2 = 2

Therefore c2 = 2.

For n = 3 we have:

3 = 1 + 1 + 1, or 3 = 1 + 2, or 3 = 2 + 1, or 3 = 3

so c3 = 4

For n = 4 we have:

4 = 1 + 1 + 1 + 1, or 4 = 1 + 1 +2, or 4= 1 + 2 + 1, or 4 = 1 + 3,

or 4 = 2 + 1 +1, or 4 = 2 +2 or 4 = 3 + 1, or 4 = 4
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so c4 = 8.

For n > 4 the set of ways that we 
an write n as a sum of ones, twos, threes, or fours

is the union of four disjoint sets: those that start with 1, those that start with 2, those

that srart with 3 and those that start with 4.

Now, there are cn−1 ways to write n − 1 as a sum of ones, twos, threes, or fours and

by adding 1 at the beginning of su
h a way we get a way to write n as a sum of ones,

twos, threes, or fours. So there are at least cn−1 ways to write n as a sum of ones,

twos, threes, or fours that have 1 as �rst summand. On the other hand if we have a

sum of ones, twos, threes, or fours with �rst summand 1 and total sum of n, we 
an

delete the �rst summand and get a sum of ones, twos, threes, or fours that adds up

to n − 1. So there are at most cn−1 ways to write n as a sum of ones, twos, threes,

or fours that have 1 as �rst summand. If follows that there are at most cn−1 ways to

write n as a sum of ones, twos, threes, or fours that have 1 as �rst summand.

By entirely analogous arguments we 
an prove that there are cn−2 ways that start with

2, cn−3 ways that start with 3 and cn−4 ways that start with 4.

Therefore there are cn−1 + cn−2 + cn−3 + cn−4 ways to write n as a sum of ones, twos,

threes, or fours.

9. A Morse 
ode is a word in the alphabet 
onsisting of two letters, the dot \·" and the

dash \−". The two letters have di�erent length, the dot has length 1 while the dash

has length 2.

(a) Give a re
ursive de�nition of the set of Morse 
odes M.

(b) Give a re
ursive de�nition of the length l(s) of a Morse 
ode s.

(
) Give a re
ursive formula for the number of Morse 
odes of length n. Prove this

re
ursive formula.

Answer. (a) The set of Morse 
odes is re
ursively de�ned as follows:

� The empty 
ode ∅ is a Morse 
ode.

� If m is a Morse 
ode so are m· and m−.

� All Morse 
odes are generated by the previous two rules.

(b) Sin
e · has length 1 and − has length 2, every time we append a dot at the end

of a Morse 
ode the length in
reases by one while every time that we append a

dash the length in
reases by 2. So we have the following re
ursive de�nition:

� l(∅) = 0

� l(m·) = l(m) + 1

� l(m−) = l(m) + 2
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(
) If Fn is the number of Morse 
odes of length n, we have the following formula:

Fn =















1 if n = 0

1 if n = 1

Fn−1 + Fn−2 if n ≥ 2

This de�nition is 
orre
t for n = 0 be
ause there is only one Morse 
ode of length 0,

namely the empty 
ode. It is also 
orre
t for n = 1 sin
e there is only one Morse 
ode

of length 1, namely \·".

For n ≥ 2 we have that the set of Morse 
odes of length n is the union of two disjoint

sets: those that end with · and those that end with −.

There are Fn−1 Morse 
odes of length n that end with ·. To see that there are at least

Fn−1 
odes of length n that end in ·, noti
e that we 
an append a dot to any Morse


ode of length n − 1 to get a 
ode of length n that ends with a dot. To see that there

are at most Fn−1 
odes of length n that end in a dot, noti
e that if we remove the last

dot from su
h a 
ode we get a 
ode of lenth n − 1.

Similarly, there are Fn−2 Morse 
odes of length n that end with −. For, appending a

dash to a 
ode of length n − 2 yields a 
ode of length n ending in −, while removing

the �nal dash from a 
ode of length n that ends in a dash yields a 
ode of length n.

Therefore, there are Fn−1 + Fn−2 Morse 
odes of length n.

10. On the set Σ∗ of words from the alphabet Σ = {I, M, W} de�ne the 
ip F(s) of a word

s as follows:

� F(∅) = ∅, where ∅ is the empty word

� For a word s, F(sI) = F(s)I, F(sW) = F(s)M, and F(sM) = F(s)W

Call a word 
ippant if F(s) = R(s), where R(s) stands for the reverse of s. For example,

MIW is a 
ippant word.

(a) Give a re
ursive de�nition for the set of 
ippant words.

(b) How many 
ippant words of length n are there? Give a formula and prove it.

Answer. (a) The following is a re
ursive de�nition of the set of �llpant words:

� The empty word is a 
ippant. The words of length 1, I, M and W are 
ippant.

� If s is a 
ippant word then so are MsW, WsM and IsI.

� All 
ippant words are generated by the previous rules.
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(b) If fn is the number of the 
ippant words of length n, we have the following

formula:

fn =

{

3
n

2 if n is even

3
n+1

2 if n is odd
(4)

Using the 
eiling fun
tion we 
an express the above in a single formula:

fn = 3⌈
n

2
⌉

To prove this we �rst prove the following re
ursive formula:

fn =















1 if n = 0

3 if n = 1

3fn−2 if n ≥ 2

(5)

This formula true for n = 1 and n = 2 as follows from the basi
 step of the

re
ursive de�nition of the set of 
ippant words.

If n ≥ 2, there are at least 3fn−2 
ippant words, sin
e for ea
h 
ippant word of

length n − 2 the re
ursive step of the de�nition in part a gives three di�erent


ippant words of length n. To see that there 
annot be more than 3fn−2 
ippant

words of length n, noti
e that if a 
ippant word of length n starts with M it has

to end with W, if it starts with W it has to end with M and if it starts with I it

has to end with I. So all 
ippants words of length n 
ome from a 
ippant word

of length n − 2 by prepending M and appending W, or by prepending W and

appending M or by prepending and appending I. Thus there are exa
tly 3fn−2


ippant words of length n.

Using formula (5) and strong indu
tion we 
an prove formula (4) as follows:

The formula (4) is true for n = 1 and n = 2 as seen by simply substituting. Now

for the indu
tive step assume that the formula is true for all numbers less than

n and we will prove that it is also true for n. Now a

ording to formula (5)

fn = 3fn−2

If n is even, by the indu
tive hypothesis fn−2 = 3
n−2

2 sin
e n − 2 is also even. So

for n even we have:

fn = 3fn−2

= 3 · 3
n−2

2

= 3
n−2

2
+1

= 3
n

2
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If n is odd then fn−2 = 3
n−2+1

2 sin
e n − 2 is also odd. Therefore:

fn = 3fn−2

= 3 · 3
n−2+1

2

= 3
n−1

2
+1

= 3
n+1

2

This 
ompletes the indu
tive step and the proof.

The following questions refer to the digraphs G1 and G2 shown bellow:

1 2

3 4

G1

1 2

3 4

G2

11. Answer the following questions for i = 1, 2:

(a) Is Gi re
exive?

(b) Is Gi irre
exive?

(
) Is Gi symmetri
?

(d) Is Gi transitive?

Answer. (a) G1 is not re
exive, G2 is.

(b) Neither G1 nor G2 are irre
exive.

(
) Neither G1 nor G2 are symmetri
.

(d) Neither graph is transitive. To see this we will work with the matri
es asso
iated

with the digraphs. The matrix asso
iated with G1 is:

M1 =











0 1 1 0

1 0 1 0

0 0 0 1

0 1 1 1










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Taking the boolean square of M1 we have

M1 ⊙ M1 =











0 1 1 0

1 0 1 0

0 0 0 1

0 1 1 1











⊙











0 1 1 0

1 0 1 0

0 0 0 1

0 1 1 1











=











1 0 1 1

0 1 1 1

0 1 1 1

1 1 1 1











Sin
e, for example, the (1, 1) element of M1 ⊙M2 is 1 while the (1, 1) element of

M1 is 0 we 
on
lude that M1 is not transitive.

The matrix asso
iated with G1 is:

M2 =











1 1 0 0

0 1 1 0

1 0 1 1

0 1 0 1











Taking the boolean square of M2 we have

M1 ⊙ M1 =











1 1 0 0

0 1 1 0

1 0 1 1

0 1 0 1











⊙











1 1 0 0

0 1 1 0

1 0 1 1

0 1 0 1











=











1 1 1 0

1 1 1 1

1 1 1 1

0 1 1 1











Sin
e, for example, the (1, 3) element of M2 ⊙M2 is 1 while the (1, 3) element of

M2 is 0 we 
on
lude that M2 is not transitive.

12. Draw the digraph G2 ◦ G1.

Answer. We �rst 
al
ulate the matrix asso
iated with G2 ◦ G1.

M2 ⊙ M1 =











1 1 0 0

0 1 1 0

1 0 1 1

0 1 0 1











⊙











0 1 1 0

1 0 1 0

0 0 0 1

0 1 1 1











=











1 1 1 0

1 0 1 1

0 1 1 1

1 1 1 1











So we have the following graph:

Page 11



1 2

3 4

G2 ◦ G1

13. What is the last digit of 20092009?

Answer. The last digit of 20092009 is 9. To see this we �rst observe that for any natural

number n the last digit of 2009n will be the same as the last digit of 9n, this follows

from the well known algorithm for multipli
ation. We will prove by indu
tion that

The last digit of 9n is 1 if n is even and 9 if n is odd.

Indeed this is true for n = 0 sin
e 0 is even and 90 = 1. Assume then that it is true

that the last digit of 9n is 1 or 9 a

ording to whether n is even or odd. We will prove

that this is true for the last digit of 9n+1 as well.

If n + 1 is odd then n is even and a

ording to the indu
tive hypothesis the last digit

of 9n is 1. Now 9n+1 = 9n · 9 and when we use the standard multipli
ation algorithm

we'll get 9 to be the last digit of 9n+1. Similarly, if n + 1 is odd, then n is even

and therefore the last digit of 9n is 9. So when we use the standard multipli
ation

algorithm to multiply 9n with 9 we'll get 1 as the last digit.

14. Prove that 7 divides 55552222 + 22225555.

Answer. Sin
e 5555 leaves remainder 4 when divided by 7 and 2222 leaves remainder

3 when divided by 7, it follows that 55552222 + 22225555 leaves the same remainder as

42222 + 35555 when divided by 7. Now

42222 + 35555 = 42222 + 35555

= 42·1111 + 35·1111

=
(

42
)1111

+
(

35
)1111

= (16)
1111

+ (243)
1111

= (16 + 243)(161110 − 161109243 + · · · − 16 · 2431109 + 2431110)

= 259(161110 − 161109243 + · · · − 16 · 2431109 + 2431110)

= 7 · 37(161110 − 161109243 + · · · − 16 · 2431109 + 2431110)
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Thus 42222 + 35555 is divisible by 7 and therefore so is 55552222 + 22225555.
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