Answers to the Midterm for CSI35

Nikos Apostolakis

1. Prove that for all natural numbers n we have:
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Answer. We proceed by induction. For n = 0 we have the statement
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which is true since both sides are evidently 0. This concludes the basic step.

For the inductive step, we assume that the sentence has been proven for n and we will
prove it for n 4 1. That is, we assume that,
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We start with the LHS of (1):
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On the other hand, the RHS of (1) is:
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Therefore the two sides of (1) are equal. This concludes the proof of (1) and the
inductive step. [

2. Prove that for all positive integers n, 7 divides n” —n.

Answer. We proceed by induction. The proposition is true when n = 1 since 7 divides
0. For the inductive step, we assume that 7 divides n” — n, that is we assume that
n’ —n = 7k for some natural number k, and we are going to prove that 7 divides
Mm+1)7 —m+1).

We use the binomial theorem to expand (n + 1)”. We have:
(Mm4+1) =n"+7n°+21n° +35n* + 353 + 2In? + 7n + 1

where the coefficients were computed as follows:

0-)-

So we have:

Mm+1) " —m=1)=n"+7n+21n°+35m* + 35>+ 2In*+7n+1—n—1
=n"—n+7n®+3n°+5m*+5n3+3n’+n)
=7k +7(M®+3n°+5n* +5n3 +3n? +n)
=7(k+n°+3n°+5n* +5n3+3n?+n)

So 7 divides (n+1)”—(n+1), and this concludes the inductive step and the proof. [J

3. Prove that for natural numbers n > 7 we have 3™ < n!
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Answer. By induction. For the basic step n = 7, we have: 37 = 2187 while 7! = 5040.
Therefore, 37 < 7!. This completes the basic step.

For the inductive step we assume that
3" <nl! (2)
and we are going to prove that 3! < (n + 1)! Indeed, since n > 7 we have that
J<n+1 (3)
Multiplying the inequalities (2) and (3) we get, since all terms involved are positive:
3" 3<nl-(n+1)

Or equivalently,
3V < (m41)!

This completes the inductive step and the proof. [

. Consider the following zero-one matrix:

o o oo
—_ —_ oo
R )
—_ oo

Prove that A™ = A for all natural numbers n > 1, where the power is with respect to
the boolean product.

Answer. The proposition is obviously true for n = 1. For the inductive step we

assume
A=A

and we’ll prove that
AMT=A
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We have:

AMT =A™ A

—A-A
0000 0000

[0 1T 11 01 11

o1 11 o1 11
o1 11 01 11
0000

101 11

o1 11
01 11

=A

This concludes the inductive step and the proof. [

. Alice and Bob play a game by taking turns removing up to 4 stones from a pile that
initially has n stones. The person that removes the last stone wins the game. Alice
plays always first. For which values of n does Alice have a winning strategy? For
which values of n does Bob have a winning strategy? Prove your answer.

Answer. We will prove that Bob has a winning strategy when n = 5k, for some
natural number k. For all other values of n Alice has a winning strategy.

To prove that for n = 5k Bob has a winning strategy, we proceed by induction. For
k = 1, that is when there are n = 5 stones, Bob can win no matter what is Alice’s
first move. Indeed, if Alice takes 1, Bob can take the remaining 4 stones and win, if
Alice takes 2, Bob can take the remaining 3 stones and win, if Alice takes 3, Bob can
take the remaining 2 stones and win, and if Alice takes 4, Bob can take the remaining
stone and win.

For the inductive step, we assume that Bob has a winning strategy when there are
n = 5k stones, and we’ll prove that he has a strategy when n = 5(k+ 1) as well. Now,
5(k + 1) = 5k + 5 so no matter what Alice’s first move is, Bob can ensure that after
his second move there are 5k stones left. (Indeed, if Alice takes 1 stone Bob takes 4,
if Alice takes 2 Bob takes 3, if Alice takes 3 Bob takes 2 and when Alice takes 4 Bob
takes 1; this way after Bob’s first move, 5 stones have been removed in total, leaving 5k
stones.) Once there are 5k stones with Alice’s turn to play, Bob can follow the strategy
guaranteed by the inductive hypothesis and win. This completes the inductive step.

Now if n is not a multiple of 5, it will leave remainder 1, 2, 3 or 4 when divided by
5. In other words, for some k we’ll have n =5k + 1, or n =5k + 2, or n =5k + 3, or
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n = 5k + 4; so in her first move Alice can take 1, or 2, or 3, or 4 respectively leaving
S5k stones with Bob’s turn to play. We proved in the previous paragraph that when
there 5k stones the second player has a winning strategy. So once there are 5k stones
and Bob’s turn to play, Alice can follow that strategy and win. [

. In Nevereverland chicken nuggets come in packages of 3 and 5. Prove that for n > 8
a Nevereverlander can combine packages to get a total of exactly n chicken nuggets.

Answer. We will use strong induction. The basic step is n = 8: We can get 8 nuggets
by using a package of three and a package of 5. This completes the basic step.

For the indcutive step, we will assume that the statement is true for all integers k with
8 < k < n and we will prove that it it is also true for n. In other words we will assume
that one can combine packages to get any number of nuggets k with 8§ < k < n and
prove that one can also get n nuggets by combining packages.

Indeed, if n is large enough so that n —3 > 8, i.e. if n > 11, then by the inductive
hypothesis we can get n — 3 nuggets by combining packages, so we can get n nuggets
by just adding a package of 3. If n is not greater of equal than 11 it will be 8, 9, or 10.
We've already seen that we can get 8 nuggets. We can also get 9 by using 3 packages
of 3 and we can get 10 nuggets by using 2 packages of 5. So we can get any number
n > 8 and this completes the inductive step and the proof. [

. Let g, be the number of bitstrings of length n with no consecutive ones. Give a
recursive formula for g,, and prove your answer.

Answer. The recursive formula is:

1 fn=0
On = 2 ifn=1
On—1 +gn72 ifn>1

This definition is correct for n = 0 because the empty bitstring has no consecutive
ones in it so we have one bitstring of length 0 with no consecutive ones. When n = 2
we have two bitstrings 0, and 1 and none of them has consecutive ones. So g; = 2.

To make descriptions brief, let us call a bitsring good if it has no consecutive ones.
For n > 1, the set of good bitstrings length n is the union of two disjoint sets: those
that start with 0 and those that start with 1.

We can take any good bitstring of length n — 1 and preppend 0 to it to get a good
bitstring of length n starting with O, therefore there are at least g,, 1 good bitstrings
of length n starting with 0. On the other hand there are at most g,, 1 good bitstrings
of length n starting with 0O, since if we delete the initial O from such a bitstring we get
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a good bitstring of length n — 1. It follows that there are exactly g,, 1 good bistrings
of length n that start with 0.

If we take any good bitstring of length n — 2 and no consecutive ones and prepend 10
to it we get a good bitstring of length n starting wiht 1. So there are at least g,, >
good bistrings of length n starting with 1. On the other hand, a good bitstring of
length n that starts with 1 actually has to start with 10, so we can delete the initial
two bits of any such bitstring to get a good bitstring of length n —2. Thus there are at
most gn > good bitstrings of length n starting with 1. It follows that there are exactly
gn_2 good bitsrings of length n that start with 1.

So we have, g, = gn_1 + gn_2 as needed. O

. For a positive integer n let c,, be the number of ways that n can be written as a
sum of ones, twos, threes, or fours where the order that the summands are written is
important. Find a recursive definition of ¢, and prove your answer.

Answer. The recursive formula is:

(1 ifn =1
2 ifn=2
Ch=1+4 ifn=3
8 ifn=4
(Cn-1+Cn2+tCn3+Cna ifn>4

The only way we can write 1 as a sum using 1, 2, 3 and 4 is simply
1=1

Therefore ¢y = 1.

For n = 2 we have two ways:
2=1+1, or 2=2
Therefore ¢, = 2.
For n = 3 we have:
3=14+141, or 3=142, or 3=241, or 3=3

socz3=4
For n =4 we have:

4=1+1+1+1 o 4=14142, or 4=14+2+41, or 4=1+3
or 4=2+1+4+1, or 4=242 or 4=3+1, o 4=4
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so c4 = 8.

For n > 4 the set of ways that we can write n as a sum of ones, twos, threes, or fours
is the union of four disjoint sets: those that start with 1, those that start with 2, those
that srart with 3 and those that start with 4.

Now, there are c,, | ways to write n — 1 as a sum of ones, twos, threes, or fours and
by adding 1 at the beginning of such a way we get a way to write n as a sum of ones,
twos, threes, or fours. So there are at least ¢, ; ways to write n as a sum of ones,
twos, threes, or fours that have 1 as first summand. On the other hand if we have a
sum of ones, twos, threes, or fours with first summand 1 and total sum of n, we can
delete the first summand and get a sum of ones, twos, threes, or fours that adds up
ton — 1. So there are at most ¢,,_; ways to write n as a sum of ones, twos, threes,
or fours that have 1 as first summand. If follows that there are at most ¢,,_; ways to
write n as a sum of ones, twos, threes, or fours that have 1 as first summand.

By entirely analogous arguments we can prove that there are c,, , ways that start with
2, c,_3 ways that start with 3 and c,,_4 ways that start with 4.

Therefore there are ¢, 1+ ¢ 2+ Cn3+ c4 Ways to write n as a sum of ones, twos,

threes, or fours. [
. A Morse code is a word in the alphabet consisting of two letters, the dot “” and the
dash “—". The two letters have different length, the dot has length 1 while the dash

has length 2.
(a) Give a recursive definition of the set of Morse codes M.
(b) Give a recursive definition of the length 1(s) of a Morse code s.
(c) Give a recursive formula for the number of Morse codes of length n. Prove this
recursive formula.
Answer. (a) The set of Morse codes is recursively defined as follows:

e The empty code () is a Morse code.
e If m is a Morse code so are m- and m—.
e All Morse codes are generated by the previous two rules.
(b) Since - has length 1 and — has length 2, every time we append a dot at the end

of a Morse code the length increases by one while every time that we append a
dash the length increases by 2. So we have the following recursive definition:

e 1(0)=0
e l(m)=1m)+1
e l(m—)=1m)+2
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10.

(c) If F,, is the number of Morse codes of length n, we have the following formula:

1 ifn=0
Foog+Frp ifn>2

This definition is correct for n = 0 because there is only one Morse code of length O,
namely the empty code. It is also correct for n = 1 since there is only one Morse code
of length 1, namely “.”.

For n > 2 we have that the set of Morse codes of length n is the union of two disjoint
sets: those that end with - and those that end with —.

There are F,,_; Morse codes of length n that end with -. To see that there are at least
F.._1 codes of length n that end in -, notice that we can append a dot to any Morse
code of length n — 1 to get a code of length n that ends with a dot. To see that there
are at most F,,_; codes of length n that end in a dot, notice that if we remove the last
dot from such a code we get a code of lenth n — 1.

Similarly, there are F,,_, Morse codes of length n that end with —. For, appending a
dash to a code of length n — 2 yields a code of length n ending in —, while removing
the final dash from a code of length n that ends in a dash yields a code of length n.

Therefore, there are F,, 1 + F,,_» Morse codes of length n. ]
On the set * of words from the alphabet X = {I, M, W} define the flip F(s) of a word
s as follows:

e F(0) = (), where () is the empty word

e For a word s, F(sI) = F(s)I, F(sW) = F(s)M, and F(sM) = F(s)W
Call a word flippant if F(s) = R(s), where R(s) stands for the reverse of s. For example,
MIW is a flippant word.
(a) Give a recursive definition for the set of flippant words.

(b) How many flippant words of length n are there? Give a formula and prove it.

Answer. (a) The following is a recursive definition of the set of fillpant words:

e The empty word is a flippant. The words of length 1, I, M and W are flippant.
e If s is a flippant word then so are MsW, WsM and Isl.

e All flippant words are generated by the previous rules.
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(b) If f, is the number of the flippant words of length n, we have the following
formula:

. {3121 if n is even @

3"7 if nis odd
Using the ceiling function we can express the above in a single formula:

fo=3%2

To prove this we first prove the following recursive formula:

1 ifn=0
fo=13 ifn =1 (5)
3, ifn>2

This formula true for n = 1 and n = 2 as follows from the basic step of the
recursive definition of the set of flippant words.

If n > 2, there are at least 3f, , flippant words, since for each flippant word of
length n — 2 the recursive step of the definition in part a gives three different
flippant words of length n. To see that there cannot be more than 3f,, , flippant
words of length n, notice that if a flippant word of length n starts with M it has
to end with W, if it starts with W it has to end with M and if it starts with I it
has to end with I. So all flippants words of length n come from a flippant word
of length n — 2 by prepending M and appending W, or by prepending W and
appending M or by prepending and appending I. Thus there are exactly 3f, >
flippant words of length n.

Using formula (5) and strong induction we can prove formula (4) as follows:
The formula (4) is true for n = 1 and n = 2 as seen by simply substituting. Now
for the inductive step assume that the formula is true for all numbers less than
n and we will prove that it is also true for n. Now according to formula (5)

fn=3fn2

If n is even, by the inductive hypothesis f,, ; = 3"7" since n — 2 is also even. So
for n even we have:

fn = 3fn72
—3.3%°
— 37+

— 37
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If n is odd then f,, , = 3" since n — 2 is also odd. Therefore:

fn=23f2
_ 3 . 3n7§+1
— 3"

:371;1

This completes the inductive step and the proof.

The following questions refer to the digraphs G; and G, shown bellow:

i C1—>23

3<:)4j Cs—>43
G; G,

11. Answer the following questions for i =1, 2:
(a) Is G; reflexive?
(b) Is Gy irreflexive?
(c) Is Gi symmetric?
(d) Is G; transitive?
Answer. (a) G; is not reflexive, G, is.

(b) Neither G; nor G, are irreflexive.

(c) Neither Gy nor G, are symmetric.

(d) Neither graph is transitive. To see this we will work with the matrices associated

with the digraphs. The matrix associated with G; is:

M, =

oS O = O
_c O =
N © J i g
—_ = O O
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Taking the boolean square of M; we have

MioOM; =

-_ O O —
—_— O O
o oo = O
-_ O O —
_ O — —
—_— O O

1
1
0
1

o O = O

—_— ) — O
— o — —
—_ o o —d

Since, for example, the (1,1) element of M; ® M, is 1 while the (1,1) element of
M, is 0 we conclude that M; is not transitive.

The matrix associated with G is:

M, =

S = o =
_ O =
S = = O
—_— - O O

Taking the boolean square of M, we have

1
M;oOM; =

—_— O O
o = o =
—_—0 — —
o = = O
—_ — O O

1
1
10
01

C© —

1
1
1
1

—_— o — —
—_ ) — O

0

Since, for example, the (1,3) element of M, ® M; is 1 while the (1,3) element of
M, is 0 we conclude that M, is not transitive.

O

12. Draw the digraph G; o G;.

Answer. We first calculate the matrix associated with G, o Gj.

1100 01 10 1110
0110 101 0 101 1
MeoMi=11 451 11%o o001 o1 11
010 1 01 1 1 1111

So we have the following graph:
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13.

14.

What is the last digit of 20092°77

Answer. The last digit of 20092°%? is 9. To see this we first observe that for any natural
number n the last digit of 2009™ will be the same as the last digit of 9™, this follows
from the well known algorithm for multiplication. We will prove by induction that

The last digit of 9™ is 1 if n is even and ¢ if n is odd.

Indeed this is true for n = 0 since 0 is even and 9° = 1. Assume then that it is true
that the last digit of 9™ is 1 or 9 according to whether n is even or odd. We will prove
that this is true for the last digit of 9™ as well.

If n+ 1 is odd then n is even and according to the inductive hypothesis the last digit
of 9" is 1. Now 9™"' = 9. 9 and when we use the standard multiplication algorithm
we'll get 9 to be the last digit of 9™"'. Similarly, if n + 1 is odd, then n is even
and therefore the last digit of 9™ is 9. So when we use the standard multiplication
algorithm to multiply 9™ with 9 we’ll get 1 as the last digit. O

Prove that 7 divides 5555%222 4 22225555,

Answer. Since 5555 leaves remainder 4 when divided by 7 and 2222 leaves remainder
3 when divided by 7, it follows that 5555222 + 2222555 leaves the same remainder as
42222 4 35555 when divided by 7. Now

42222 + 35555 _ 42222 + 35555
:42-1111 +35-HH
_ (42)1111 4 (35)1111
_ (]6)”” + (243)1111
= (164 243)(16'11° — 16197243 1 ... — 16 - 2431197 1 2431119)

=259(16"11° — 16197243 + ... — 16 - 243197 4. 2431110)
=7-37(16"1° —16"%9243 4 ... — 162431197 1. 2431110)
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Thus 4%2%? 4 3%5% is divisible by 7 and therefore so is 5555222 4 22225555
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