Answers to the Midterm for CSI35

Nikos Apostolakis

1. Prove that for all natural numbers n we have:

$$
\sum_{i=0}^{n} i^{2}=\frac{n(n+1)(2 n+1}{6}
$$

Answer. We proceed by induction. For $n=0$ we have the statement

$$
\sum_{i=0}^{0} i^{2}=\frac{0(0+1)(2 \cdot 0+1}{6}
$$

which is true since both sides are evidently 0 . This concludes the basic step.
For the inductive step, we assume that the sentence has been proven for n and we will prove it for $n+1$. That is, we assume that,

$$
\sum_{i=0}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

and we will prove that

$$
\begin{equation*}
\sum_{i=0}^{n+1} i^{2}=\frac{(n+1)(n+1+1)(2(n+1)+1)}{6} \tag{1}
\end{equation*}
$$

We start with the LHS of (1):

$$
\begin{aligned}
\sum_{i=0}^{n+1} i^{2} & =\sum_{i=0}^{n} i^{2}+(n+1)^{2} \\
& =\frac{n(n+1)(2 n+1)}{6}+(n+1)^{2} \\
& =\frac{n(n+1)(2 n+1)+6(n+1)^{2}}{6} \\
& =\frac{(n+1)(n(2 n+1)+6(n+1))}{6} \\
& =\frac{(n+1)(n(2 n+1)+6(n+1))}{6} \\
& =\frac{(n+1)\left(2 n^{2}+7 n+6\right)}{6}
\end{aligned}
$$

On the other hand, the RHS of (1) is:

$$
\begin{aligned}
\frac{(n+1)(n+1+1)(2(n+1)+1)}{6} & =\frac{(n+1)(n+2)(2 n+3)}{6} \\
& =\frac{(n+1)\left(2 n^{2}+7 n+6\right)}{6}
\end{aligned}
$$

Therefore the two sides of (1) are equal. This concludes the proof of (1) and the inductive step.
2. Prove that for all positive integers $n, 7$ divides $n^{7}-n$.

Answer. We proceed by induction. The proposition is true when $n=1$ since 7 divides 0 . For the inductive step, we assume that 7 divides $n^{7}-n$, that is we assume that $n^{7}-n=7 k$ for some natural number k, and we are going to prove that 7 divides $(n+1)^{7}-(n+1)$.

We use the binomial theorem to expand $(n+1)^{7}$. We have:

$$
(n+1)^{7}=n^{7}+7 n^{6}+21 n^{5}+35 n^{4}+35 n^{3}+21 n^{2}+7 n+1
$$

where the coefficients were computed as follows:

$$
\begin{gathered}
\binom{7}{0}=\binom{7}{7}=1 \\
\binom{7}{1}=\binom{7}{6}=7 \\
\binom{7}{2}=\binom{7}{5}=\frac{7 \cdot 6}{2!}=21 \\
\binom{7}{3}=\binom{7}{4}=\frac{7 \cdot 6 \cdot 5}{3!}=35
\end{gathered}
$$

So we have:

$$
\begin{aligned}
(n+1)^{7}-(n-1) & =n^{7}+7 n^{6}+21 n^{5}+35 n^{4}+35 n^{3}+21 n^{2}+7 n+1-n-1 \\
& =n^{7}-n+7\left(n^{6}+3 n^{5}+5 n^{4}+5 n^{3}+3 n^{2}+n\right) \\
& =7 k+7\left(n^{6}+3 n^{5}+5 n^{4}+5 n^{3}+3 n^{2}+n\right) \\
& =7\left(k+n^{6}+3 n^{5}+5 n^{4}+5 n^{3}+3 n^{2}+n\right)
\end{aligned}
$$

So 7 divides $(n+1)^{7}-(n+1)$, and this concludes the inductive step and the proof.
3. Prove that for natural numbers $n \geq 7$ we have $3^{n}<n$!

Answer. By induction. For the basic step $n=7$, we have: $3^{7}=2187$ while $7!=5040$. Therefore, $3^{7}<7$!. This completes the basic step.

For the inductive step we assume that

$$
\begin{equation*}
3^{n}<n! \tag{2}
\end{equation*}
$$

and we are going to prove that $3^{n+1}<(n+1)$! Indeed, since $n \geq 7$ we have that

$$
\begin{equation*}
3<n+1 \tag{3}
\end{equation*}
$$

Multiplying the inequalities (2) and (3) we get, since all terms involved are positive:

$$
3^{n} \cdot 3<n!\cdot(n+1)
$$

Or equivalently,

$$
3^{n+1}<(n+1)!
$$

This completes the inductive step and the proof.
4. Consider the following zero-one matrix:

$$
A=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right)
$$

Prove that $A^{n}=A$ for all natural numbers $n \geq 1$, where the power is with respect to the boolean product.

Answer. The proposition is obviously true for $n=1$. For the inductive step we assume

$$
A^{n}=A
$$

and we'll prove that

$$
A^{n+1}=A
$$

We have:

$$
\begin{aligned}
A^{n+1} & =A^{n} \cdot A \\
& =A \cdot A \\
& =\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right) \cdot\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right) \\
& =\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right) \\
& =A
\end{aligned}
$$

This concludes the inductive step and the proof.
5. Alice and Bob play a game by taking turns removing up to 4 stones from a pile that initially has n stones. The person that removes the last stone wins the game. Alice plays always first. For which values of n does Alice have a winning strategy? For which values of n does Bob have a winning strategy? Prove your answer.

Answer. We will prove that Bob has a winning strategy when $n=5 k$, for some natural number k. For all other values of n Alice has a winning strategy.

To prove that for $n=5 k$ Bob has a winning strategy, we proceed by induction. For $k=1$, that is when there are $n=5$ stones, Bob can win no matter what is Alice's first move. Indeed, if Alice takes 1 , Bob can take the remaining 4 stones and win, if Alice takes 2, Bob can take the remaining 3 stones and win, if Alice takes 3, Bob can take the remaining 2 stones and win, and if Alice takes 4, Bob can take the remaining stone and win.

For the inductive step, we assume that Bob has a winning strategy when there are $\mathrm{n}=5 \mathrm{k}$ stones, and we'll prove that he has a strategy when $\mathrm{n}=5(\mathrm{k}+1)$ as well. Now, $5(k+1)=5 k+5$ so no matter what Alice's first move is, Bob can ensure that after his second move there are 5 k stones left. (Indeed, if Alice takes 1 stone Bob takes 4, if Alice takes 2 Bob takes 3, if Alice takes 3 Bob takes 2 and when Alice takes 4 Bob takes 1; this way after Bob's first move, 5 stones have been removed in total, leaving 5 k stones.) Once there are 5 k stones with Alice's turn to play, Bob can follow the strategy guaranteed by the inductive hypothesis and win. This completes the inductive step.
Now if n is not a multiple of 5 , it will leave remainder $1,2,3$ or 4 when divided by 5. In other words, for some k we'll have $n=5 k+1$, or $n=5 k+2$, or $n=5 k+3$, or
$n=5 k+4$; so in her first move Alice can take 1 , or 2 , or 3 , or 4 respectively leaving $5 k$ stones with Bob's turn to play. We proved in the previous paragraph that when there $5 k$ stones the second player has a winning strategy. So once there are $5 k$ stones and Bob's turn to play, Alice can follow that strategy and win.
6. In Nevereverland chicken nuggets come in packages of 3 and 5. Prove that for $n \geq 8$ a Nevereverlander can combine packages to get a total of exactly n chicken nuggets.

Answer. We will use strong induction. The basic step is $n=8$: We can get 8 nuggets by using a package of three and a package of 5 . This completes the basic step.

For the indcutive step, we will assume that the statement is true for all integers k with $8 \leq k<n$ and we will prove that it it is also true for n. In other words we will assume that one can combine packages to get any number of nuggets k with $8 \leq \mathrm{k}<\mathrm{n}$ and prove that one can also get n nuggets by combining packages.
Indeed, if n is large enough so that $n-3 \geq 8$, i.e. if $n \geq 11$, then by the inductive hypothesis we can get $n-3$ nuggets by combining packages, so we can get n nuggets by just adding a package of 3 . If n is not greater of equal than 11 it will be 8,9 , or 10 . We've already seen that we can get 8 nuggets. We can also get 9 by using 3 packages of 3 and we can get 10 nuggets by using 2 packages of 5 . So we can get any number $n \geq 8$ and this completes the inductive step and the proof.
7. Let g_{n} be the number of bitstrings of length n with no consecutive ones. Give a recursive formula for g_{n} and prove your answer.

Answer. The recursive formula is:

$$
g_{n}= \begin{cases}1 & \text { if } n=0 \\ 2 & \text { if } n=1 \\ g_{n-1}+g_{n-2} & \text { if } n>1\end{cases}
$$

This definition is correct for $n=0$ because the empty bitstring has no consecutive ones in it so we have one bitstring of length 0 with no consecutive ones. When $n=2$ we have two bitstrings 0 , and 1 and none of them has consecutive ones. So $g_{1}=2$.
To make descriptions brief, let us call a bitsring good if it has no consecutive ones. For $n>1$, the set of good bitstrings length n is the union of two disjoint sets: those that start with 0 and those that start with 1.

We can take any good bitstring of length $n-1$ and preppend 0 to it to get a good bitstring of length n starting with 0 , therefore there are at least g_{n-1} good bitstrings of length n starting with 0 . On the other hand there are at most g_{n-1} good bitstrings of length n starting with 0 , since if we delete the initial 0 from such a bitstring we get
a good bitstring of length $n-1$. It follows that there are exactly g_{n-1} good bistrings of length n that start with 0 .

If we take any good bitstring of length $n-2$ and no consecutive ones and prepend 10 to it we get a good bitstring of length n starting wiht 1 . So there are at least g_{n-2} good bistrings of length n starting with 1 . On the other hand, a good bitstring of length n that starts with 1 actually has to start with 10 , so we can delete the initial two bits of any such bitstring to get a good bitstring of length $n-2$. Thus there are at most g_{n-2} good bitstrings of length n starting with 1 . It follows that there are exactly g_{n-2} good bitsrings of length n that start with 1 .
So we have, $g_{n}=g_{n-1}+g_{n-2}$ as needed.
8. For a positive integer n let c_{n} be the number of ways that n can be written as a sum of ones, twos, threes, or fours where the order that the summands are written is important. Find a recursive definition of c_{n} and prove your answer.

Answer. The recursive formula is:

$$
c_{n}= \begin{cases}1 & \text { if } n=1 \\ 2 & \text { if } n=2 \\ 4 & \text { if } n=3 \\ 8 & \text { if } n=4 \\ c_{n-1}+c_{n-2}+c_{n-3}+c_{n-4} & \text { if } n>4\end{cases}
$$

The only way we can write 1 as a sum using $1,2,3$ and 4 is simply

$$
1=1
$$

Therefore $\mathrm{c}_{1}=1$.
For $n=2$ we have two ways:

$$
2=1+1, \quad \text { or } \quad 2=2
$$

Therefore $c_{2}=2$.
For $\mathfrak{n}=3$ we have:

$$
3=1+1+1, \quad \text { or } 3=1+2, \quad \text { or } 3=2+1, \quad \text { or } \quad 3=3
$$

so $c_{3}=4$
For $n=4$ we have:

$$
\begin{aligned}
& 4=1+1+1+1, \quad \text { or } \quad 4=1+1+2, \quad \text { or } 4=1+2+1, \quad \text { or } 4=1+3, \\
& \text { or } \quad 4=2+1+1, \quad \text { or } 4=2+2 \quad \text { or } 4=3+1, \quad \text { or } 4=4
\end{aligned}
$$

so $c_{4}=8$.
For $n>4$ the set of ways that we can write n as a sum of ones, twos, threes, or fours is the union of four disjoint sets: those that start with 1 , those that start with 2 , those that srart with 3 and those that start with 4.

Now, there are c_{n-1} ways to write $n-1$ as a sum of ones, twos, threes, or fours and by adding 1 at the beginning of such a way we get a way to write n as a sum of ones, twos, threes, or fours. So there are at least c_{n-1} ways to write n as a sum of ones, twos, threes, or fours that have 1 as first summand. On the other hand if we have a sum of ones, twos, threes, or fours with first summand 1 and total sum of n, we can delete the first summand and get a sum of ones, twos, threes, or fours that adds up to $n-1$. So there are at most c_{n-1} ways to write n as a sum of ones, twos, threes, or fours that have 1 as first summand. If follows that there are at most c_{n-1} ways to write n as a sum of ones, twos, threes, or fours that have 1 as first summand.

By entirely analogous arguments we can prove that there are c_{n-2} ways that start with $2, c_{n-3}$ ways that start with 3 and c_{n-4} ways that start with 4 .
Therefore there are $c_{n-1}+c_{n-2}+c_{n-3}+c_{n-4}$ ways to write n as a sum of ones, twos, threes, or fours.
9. A Morse code is a word in the alphabet consisting of two letters, the dot "." and the dash "-". The two letters have different length, the dot has length 1 while the dash has length 2.
(a) Give a recursive definition of the set of Morse codes M.
(b) Give a recursive definition of the length $l(s)$ of a Morse code s.
(c) Give a recursive formula for the number of Morse codes of length n. Prove this recursive formula.

Answer. (a) The set of Morse codes is recursively defined as follows:

- The empty code \emptyset is a Morse code.
- If m is a Morse code so are m - and $m-$.
- All Morse codes are generated by the previous two rules.
(b) Since \cdot has length 1 and - has length 2 , every time we append a dot at the end of a Morse code the length increases by one while every time that we append a dash the length increases by 2 . So we have the following recursive definition:
- $l(\emptyset)=0$
- $l(m \cdot)=l(m)+1$
- $l(m-)=l(m)+2$
(c) If F_{n} is the number of Morse codes of length n, we have the following formula:

$$
F_{n}= \begin{cases}1 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ F_{n-1}+F_{n-2} & \text { if } n \geq 2\end{cases}
$$

This definition is correct for $n=0$ because there is only one Morse code of length 0 , namely the empty code. It is also correct for $n=1$ since there is only one Morse code of length 1 , namely ".".

For $n \geq 2$ we have that the set of Morse codes of length n is the union of two disjoint sets: those that end with • and those that end with -.

There are F_{n-1} Morse codes of length n that end with . To see that there are at least F_{n-1} codes of length n that end in \cdot, notice that we can append a dot to any Morse code of length $n-1$ to get a code of length n that ends with a dot. To see that there are at most F_{n-1} codes of length n that end in a dot, notice that if we remove the last dot from such a code we get a code of lenth $n-1$.

Similarly, there are F_{n-2} Morse codes of length n that end with - . For, appending a dash to a code of length $n-2$ yields a code of length n ending in - , while removing the final dash from a code of length n that ends in a dash yields a code of length n.

Therefore, there are $F_{n-1}+F_{n-2}$ Morse codes of length n.
10. On the set Σ^{*} of words from the alphabet $\Sigma=\{I, M, W\}$ define the flip $F(s)$ of a word s as follows:

- $F(\emptyset)=\emptyset$, where \emptyset is the empty word
- For a word $s, F(s I)=F(s) I, F(s W)=F(s) M$, and $F(s M)=F(s) W$

Call a word flippant if $\mathrm{F}(\mathrm{s})=\mathrm{R}(\mathrm{s})$, where $\mathrm{R}(\mathrm{s})$ stands for the reverse of s. For example, MIW is a flippant word.
(a) Give a recursive definition for the set of flippant words.
(b) How many flippant words of length n are there? Give a formula and prove it.

Answer. (a) The following is a recursive definition of the set of fillpant words:

- The empty word is a flippant. The words of length $1, I, M$ and W are flippant.
- If s is a flippant word then so are MsW, WsM and IsI.
- All flippant words are generated by the previous rules.
(b) If f_{n} is the number of the flippant words of length n, we have the following formula:

$$
f_{n}= \begin{cases}3^{\frac{n}{2}} & \text { if } n \text { is even } \tag{4}\\ 3^{\frac{n+1}{2}} & \text { if } n \text { is odd }\end{cases}
$$

Using the ceiling function we can express the above in a single formula:

$$
f_{n}=3^{\left\lceil\frac{n}{2}\right\rceil}
$$

To prove this we first prove the following recursive formula:

$$
f_{n}= \begin{cases}1 & \text { if } n=0 \tag{5}\\ 3 & \text { if } n=1 \\ 3 f_{n-2} & \text { if } n \geq 2\end{cases}
$$

This formula true for $n=1$ and $n=2$ as follows from the basic step of the recursive definition of the set of flippant words.
If $n \geq 2$, there are at least $3 f_{n-2}$ flippant words, since for each flippant word of length $n-2$ the recursive step of the definition in part a gives three different flippant words of length n. To see that there cannot be more than $3 f_{n-2}$ flippant words of length n, notice that if a flippant word of length n starts with M it has to end with W, if it starts with W it has to end with M and if it starts with I it has to end with I. So all flippants words of length \mathfrak{n} come from a flippant word of length $n-2$ by prepending M and appending W, or by prepending W and appending M or by prepending and appending I. Thus there are exactly $3 f_{n-2}$ flippant words of length n.
Using formula (5) and strong induction we can prove formula (4) as follows:
The formula (4) is true for $n=1$ and $n=2$ as seen by simply substituting. Now for the inductive step assume that the formula is true for all numbers less than n and we will prove that it is also true for n. Now according to formula (5)

$$
f_{n}=3 f_{n-2}
$$

If n is even, by the inductive hypothesis $f_{n-2}=3^{\frac{n-2}{2}}$ since $n-2$ is also even. So for n even we have:

$$
\begin{aligned}
f_{n} & =3 f_{n-2} \\
& =3 \cdot 3^{\frac{n-2}{2}} \\
& =3^{\frac{n-2}{2}+1} \\
& =3^{\frac{n}{2}}
\end{aligned}
$$

If n is odd then $f_{n-2}=3 \frac{n-2+1}{2}$ since $n-2$ is also odd. Therefore:

$$
\begin{aligned}
f_{n} & =3 f_{n-2} \\
& =3 \cdot 3^{\frac{n-2+1}{2}} \\
& =3^{\frac{n-1}{2}+1} \\
& =3^{\frac{n+1}{2}}
\end{aligned}
$$

This completes the inductive step and the proof.

The following questions refer to the digraphs G_{1} and G_{2} shown bellow:

G_{1}

G_{2}
11. Answer the following questions for $\mathfrak{i}=1,2$:
(a) Is G_{i} reflexive?
(b) Is G_{i} irreflexive?
(c) Is G_{i} symmetric?
(d) Is G_{i} transitive?

Answer. (a) G_{1} is not reflexive, G_{2} is.
(b) Neither G_{1} nor G_{2} are irreflexive.
(c) Neither G_{1} nor G_{2} are symmetric.
(d) Neither graph is transitive. To see this we will work with the matrices associated with the digraphs. The matrix associated with G_{1} is:

$$
M_{1}=\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1
\end{array}\right)
$$

Taking the boolean square of M_{1} we have

$$
\begin{aligned}
M_{1} \odot M_{1} & =\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1
\end{array}\right) \odot\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1
\end{array}\right) \\
& =\left(\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right)
\end{aligned}
$$

Since, for example, the $(1,1)$ element of $M_{1} \odot M_{2}$ is 1 while the $(1,1)$ element of M_{1} is 0 we conclude that M_{1} is not transitive.
The matrix associated with G_{1} is:

$$
M_{2}=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right)
$$

Taking the boolean square of M_{2} we have

$$
\begin{aligned}
M_{1} \odot M_{1} & =\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right) \odot\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right)
\end{aligned}
$$

Since, for example, the $(1,3)$ element of $M_{2} \odot M_{2}$ is 1 while the $(1,3)$ element of M_{2} is 0 we conclude that M_{2} is not transitive.
12. Draw the digraph $\mathrm{G}_{2} \circ \mathrm{G}_{1}$.

Answer. We first calculate the matrix associated with $\mathrm{G}_{2} \circ \mathrm{G}_{1}$.

$$
M_{2} \odot M_{1}=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right) \odot\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1
\end{array}\right)=\left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right)
$$

So we have the following graph:

13. What is the last digit of 2009^{2009} ?

Answer. The last digit of 2009^{2009} is 9 . To see this we first observe that for any natural number n the last digit of 2009^{n} will be the same as the last digit of 9^{n}, this follows from the well known algorithm for multiplication. We will prove by induction that

The last digit of 9^{n} is 1 if n is even and 9 if n is odd.
Indeed this is true for $\mathfrak{n}=0$ since 0 is even and $9^{\circ}=1$. Assume then that it is true that the last digit of 9^{n} is 1 or 9 according to whether n is even or odd. We will prove that this is true for the last digit of 9^{n+1} as well.

If $n+1$ is odd then n is even and according to the inductive hypothesis the last digit of 9^{n} is 1 . Now $9^{n+1}=9^{n} .9$ and when we use the standard multiplication algorithm we'll get 9 to be the last digit of 9^{n+1}. Similarly, if $n+1$ is odd, then n is even and therefore the last digit of 9^{n} is 9 . So when we use the standard multiplication algorithm to multiply 9^{n} with 9 we'll get 1 as the last digit.
14. Prove that 7 divides $5555^{2222}+2222^{5555}$.

Answer. Since 5555 leaves remainder 4 when divided by 7 and 2222 leaves remainder 3 when divided by 7 , it follows that $5555^{2222}+2222^{5555}$ leaves the same remainder as $4^{2222}+3^{5555}$ when divided by 7. Now

$$
\begin{aligned}
4^{2222}+3^{5555} & =4^{2222}+3^{5555} \\
& =4^{2 \cdot 1111}+3^{5 \cdot 1111} \\
& =\left(4^{2}\right)^{1111}+\left(3^{5}\right)^{1111} \\
& =(16)^{1111}+(243)^{1111} \\
& =(16+243)\left(16^{1110}-16^{1109} 243+\cdots-16 \cdot 243^{1109}+243^{1110}\right) \\
& =259\left(16^{1110}-16^{1109} 243+\cdots-16 \cdot 243^{1109}+243^{1110}\right) \\
& =7 \cdot 37\left(16^{1110}-16^{1109} 243+\cdots-16 \cdot 243^{1109}+243^{1110}\right)
\end{aligned}
$$

Thus $4^{2222}+3^{5555}$ is divisible by 7 and therefore so is $5555^{2222}+2222^{5555}$.

Page 13

