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1. Prove that for all natural numbers n we have:

n
∑

i=0

i2 =
n(n + 1)(2n + 1

6

Answer. We proeed by indution. For n = 0 we have the statement

0
∑

i=0

i2 =
0(0 + 1)(2 · 0 + 1

6

whih is true sine both sides are evidently 0. This onludes the basi step.

For the indutive step, we assume that the sentene has been proven for n and we will

prove it for n + 1. That is, we assume that,

n
∑

i=0

i2 =
n(n + 1)(2n + 1)

6

and we will prove that

n+1
∑

i=0

i2 =
(n + 1)(n + 1 + 1) (2(n + 1) + 1)

6
(1)

We start with the LHS of (1):

n+1
∑

i=0

i2 =

n
∑

i=0

i2 + (n + 1)2

=
n(n + 1)(2n + 1)

6
+ (n + 1)2

=
n(n + 1)(2n + 1) + 6(n + 1)2

6

=
(n + 1) (n(2n + 1) + 6(n + 1))

6

=
(n + 1) (n(2n + 1) + 6(n + 1))

6

=
(n + 1)

(

2n2 + 7n + 6
)

6

1



On the other hand, the RHS of (1) is:

(n + 1)(n + 1 + 1) (2(n + 1) + 1)

6
=

(n + 1)(n + 2)(2n + 3)

6

=
(n + 1)(2n2 + 7n + 6)

6

Therefore the two sides of (1) are equal. This onludes the proof of (1) and the

indutive step.

2. Prove that for all positive integers n, 7 divides n7 − n.

Answer. We proeed by indution. The proposition is true when n = 1 sine 7 divides

0. For the indutive step, we assume that 7 divides n7 − n, that is we assume that

n7 − n = 7k for some natural number k, and we are going to prove that 7 divides

(n + 1)7 − (n + 1).

We use the binomial theorem to expand (n + 1)7. We have:

(n + 1)7 = n7 + 7n6 + 21n5 + 35n4 + 35n3 + 21n2 + 7n + 1

where the oeÆients were omputed as follows:

(

7

0

)

=

(

7

7

)

= 1

(

7

1

)

=

(

7

6

)

= 7

(

7

2

)

=

(

7

5

)

=
7 · 6

2!
= 21

(

7

3

)

=

(

7

4

)

=
7 · 6 · 5

3!
= 35

So we have:

(n + 1)7 − (n − 1) = n7 + 7n6 + 21n5 + 35n4 + 35n3 + 21n2 + 7n + 1 − n − 1

= n7 − n + 7(n6 + 3n5 + 5n4 + 5n3 + 3n2 + n)

= 7k + 7(n6 + 3n5 + 5n4 + 5n3 + 3n2 + n)

= 7(k + n6 + 3n5 + 5n4 + 5n3 + 3n2 + n)

So 7 divides (n+1)7−(n+1), and this onludes the indutive step and the proof.

3. Prove that for natural numbers n ≥ 7 we have 3n < n!
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Answer. By indution. For the basi step n = 7, we have: 37 = 2187 while 7! = 5040.

Therefore, 37 < 7!. This ompletes the basi step.

For the indutive step we assume that

3n < n! (2)

and we are going to prove that 3n+1 < (n + 1)! Indeed, sine n ≥ 7 we have that

3 < n + 1 (3)

Multiplying the inequalities (2) and (3) we get, sine all terms involved are positive:

3n · 3 < n! · (n + 1)

Or equivalently,

3n+1 < (n + 1)!

This ompletes the indutive step and the proof.

4. Consider the following zero-one matrix:

A =











0 0 0 0

0 1 1 1

0 1 1 1

0 1 1 1











Prove that An = A for all natural numbers n ≥ 1, where the power is with respet to

the boolean produt.

Answer. The proposition is obviously true for n = 1. For the indutive step we

assume

An = A

and we'll prove that

An+1 = A
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We have:

An+1 = An · A

= A · A

=











0 0 0 0

0 1 1 1

0 1 1 1

0 1 1 1











·











0 0 0 0

0 1 1 1

0 1 1 1

0 1 1 1











=











0 0 0 0

0 1 1 1

0 1 1 1

0 1 1 1











= A

This onludes the indutive step and the proof.

5. Alie and Bob play a game by taking turns removing up to 4 stones from a pile that

initially has n stones. The person that removes the last stone wins the game. Alie

plays always �rst. For whih values of n does Alie have a winning strategy? For

whih values of n does Bob have a winning strategy? Prove your answer.

Answer. We will prove that Bob has a winning strategy when n = 5k, for some

natural number k. For all other values of n Alie has a winning strategy.

To prove that for n = 5k Bob has a winning strategy, we proeed by indution. For

k = 1, that is when there are n = 5 stones, Bob an win no matter what is Alie's

�rst move. Indeed, if Alie takes 1, Bob an take the remaining 4 stones and win, if

Alie takes 2, Bob an take the remaining 3 stones and win, if Alie takes 3, Bob an

take the remaining 2 stones and win, and if Alie takes 4, Bob an take the remaining

stone and win.

For the indutive step, we assume that Bob has a winning strategy when there are

n = 5k stones, and we'll prove that he has a strategy when n = 5(k+ 1) as well. Now,

5(k + 1) = 5k + 5 so no matter what Alie's �rst move is, Bob an ensure that after

his seond move there are 5k stones left. (Indeed, if Alie takes 1 stone Bob takes 4,

if Alie takes 2 Bob takes 3, if Alie takes 3 Bob takes 2 and when Alie takes 4 Bob

takes 1; this way after Bob's �rst move, 5 stones have been removed in total, leaving 5k

stones.) One there are 5k stones with Alie's turn to play, Bob an follow the strategy

guaranteed by the indutive hypothesis and win. This ompletes the indutive step.

Now if n is not a multiple of 5, it will leave remainder 1, 2, 3 or 4 when divided by

5. In other words, for some k we'll have n = 5k + 1, or n = 5k + 2, or n = 5k + 3, or
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n = 5k + 4; so in her �rst move Alie an take 1, or 2, or 3, or 4 respetively leaving

5k stones with Bob's turn to play. We proved in the previous paragraph that when

there 5k stones the seond player has a winning strategy. So one there are 5k stones

and Bob's turn to play, Alie an follow that strategy and win.

6. In Nevereverland hiken nuggets ome in pakages of 3 and 5. Prove that for n ≥ 8

a Nevereverlander an ombine pakages to get a total of exatly n hiken nuggets.

Answer. We will use strong indution. The basi step is n = 8: We an get 8 nuggets

by using a pakage of three and a pakage of 5. This ompletes the basi step.

For the indutive step, we will assume that the statement is true for all integers k with

8 ≤ k < n and we will prove that it it is also true for n. In other words we will assume

that one an ombine pakages to get any number of nuggets k with 8 ≤ k < n and

prove that one an also get n nuggets by ombining pakages.

Indeed, if n is large enough so that n − 3 ≥ 8, i.e. if n ≥ 11, then by the indutive

hypothesis we an get n − 3 nuggets by ombining pakages, so we an get n nuggets

by just adding a pakage of 3. If n is not greater of equal than 11 it will be 8, 9, or 10.

We've already seen that we an get 8 nuggets. We an also get 9 by using 3 pakages

of 3 and we an get 10 nuggets by using 2 pakages of 5. So we an get any number

n ≥ 8 and this ompletes the indutive step and the proof.

7. Let gn be the number of bitstrings of length n with no onseutive ones. Give a

reursive formula for gn and prove your answer.

Answer. The reursive formula is:

gn =















1 if n = 0

2 if n = 1

gn−1 + gn−2 if n > 1

This de�nition is orret for n = 0 beause the empty bitstring has no onseutive

ones in it so we have one bitstring of length 0 with no onseutive ones. When n = 2

we have two bitstrings 0, and 1 and none of them has onseutive ones. So g1 = 2.

To make desriptions brief, let us all a bitsring good if it has no onseutive ones.

For n > 1, the set of good bitstrings length n is the union of two disjoint sets: those

that start with 0 and those that start with 1.

We an take any good bitstring of length n − 1 and preppend 0 to it to get a good

bitstring of length n starting with 0, therefore there are at least gn−1 good bitstrings

of length n starting with 0. On the other hand there are at most gn−1 good bitstrings

of length n starting with 0, sine if we delete the initial 0 from suh a bitstring we get
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a good bitstring of length n − 1. It follows that there are exatly gn−1 good bistrings

of length n that start with 0.

If we take any good bitstring of length n − 2 and no onseutive ones and prepend 10

to it we get a good bitstring of length n starting wiht 1. So there are at least gn−2

good bistrings of length n starting with 1. On the other hand, a good bitstring of

length n that starts with 1 atually has to start with 10, so we an delete the initial

two bits of any suh bitstring to get a good bitstring of length n−2. Thus there are at

most gn−2 good bitstrings of length n starting with 1. It follows that there are exatly

gn−2 good bitsrings of length n that start with 1.

So we have, gn = gn−1 + gn−2 as needed.

8. For a positive integer n let cn be the number of ways that n an be written as a

sum of ones, twos, threes, or fours where the order that the summands are written is

important. Find a reursive de�nition of cn and prove your answer.

Answer. The reursive formula is:

cn =



































1 if n = 1

2 if n = 2

4 if n = 3

8 if n = 4

cn−1 + cn−2 + cn−3 + cn−4 if n > 4

The only way we an write 1 as a sum using 1, 2, 3 and 4 is simply

1 = 1

Therefore c1 = 1.

For n = 2 we have two ways:

2 = 1 + 1, or 2 = 2

Therefore c2 = 2.

For n = 3 we have:

3 = 1 + 1 + 1, or 3 = 1 + 2, or 3 = 2 + 1, or 3 = 3

so c3 = 4

For n = 4 we have:

4 = 1 + 1 + 1 + 1, or 4 = 1 + 1 +2, or 4= 1 + 2 + 1, or 4 = 1 + 3,

or 4 = 2 + 1 +1, or 4 = 2 +2 or 4 = 3 + 1, or 4 = 4

Page 6



so c4 = 8.

For n > 4 the set of ways that we an write n as a sum of ones, twos, threes, or fours

is the union of four disjoint sets: those that start with 1, those that start with 2, those

that srart with 3 and those that start with 4.

Now, there are cn−1 ways to write n − 1 as a sum of ones, twos, threes, or fours and

by adding 1 at the beginning of suh a way we get a way to write n as a sum of ones,

twos, threes, or fours. So there are at least cn−1 ways to write n as a sum of ones,

twos, threes, or fours that have 1 as �rst summand. On the other hand if we have a

sum of ones, twos, threes, or fours with �rst summand 1 and total sum of n, we an

delete the �rst summand and get a sum of ones, twos, threes, or fours that adds up

to n − 1. So there are at most cn−1 ways to write n as a sum of ones, twos, threes,

or fours that have 1 as �rst summand. If follows that there are at most cn−1 ways to

write n as a sum of ones, twos, threes, or fours that have 1 as �rst summand.

By entirely analogous arguments we an prove that there are cn−2 ways that start with

2, cn−3 ways that start with 3 and cn−4 ways that start with 4.

Therefore there are cn−1 + cn−2 + cn−3 + cn−4 ways to write n as a sum of ones, twos,

threes, or fours.

9. A Morse ode is a word in the alphabet onsisting of two letters, the dot \·" and the

dash \−". The two letters have di�erent length, the dot has length 1 while the dash

has length 2.

(a) Give a reursive de�nition of the set of Morse odes M.

(b) Give a reursive de�nition of the length l(s) of a Morse ode s.

() Give a reursive formula for the number of Morse odes of length n. Prove this

reursive formula.

Answer. (a) The set of Morse odes is reursively de�ned as follows:

� The empty ode ∅ is a Morse ode.

� If m is a Morse ode so are m· and m−.

� All Morse odes are generated by the previous two rules.

(b) Sine · has length 1 and − has length 2, every time we append a dot at the end

of a Morse ode the length inreases by one while every time that we append a

dash the length inreases by 2. So we have the following reursive de�nition:

� l(∅) = 0

� l(m·) = l(m) + 1

� l(m−) = l(m) + 2
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() If Fn is the number of Morse odes of length n, we have the following formula:

Fn =















1 if n = 0

1 if n = 1

Fn−1 + Fn−2 if n ≥ 2

This de�nition is orret for n = 0 beause there is only one Morse ode of length 0,

namely the empty ode. It is also orret for n = 1 sine there is only one Morse ode

of length 1, namely \·".

For n ≥ 2 we have that the set of Morse odes of length n is the union of two disjoint

sets: those that end with · and those that end with −.

There are Fn−1 Morse odes of length n that end with ·. To see that there are at least

Fn−1 odes of length n that end in ·, notie that we an append a dot to any Morse

ode of length n − 1 to get a ode of length n that ends with a dot. To see that there

are at most Fn−1 odes of length n that end in a dot, notie that if we remove the last

dot from suh a ode we get a ode of lenth n − 1.

Similarly, there are Fn−2 Morse odes of length n that end with −. For, appending a

dash to a ode of length n − 2 yields a ode of length n ending in −, while removing

the �nal dash from a ode of length n that ends in a dash yields a ode of length n.

Therefore, there are Fn−1 + Fn−2 Morse odes of length n.

10. On the set Σ∗ of words from the alphabet Σ = {I, M, W} de�ne the ip F(s) of a word

s as follows:

� F(∅) = ∅, where ∅ is the empty word

� For a word s, F(sI) = F(s)I, F(sW) = F(s)M, and F(sM) = F(s)W

Call a word ippant if F(s) = R(s), where R(s) stands for the reverse of s. For example,

MIW is a ippant word.

(a) Give a reursive de�nition for the set of ippant words.

(b) How many ippant words of length n are there? Give a formula and prove it.

Answer. (a) The following is a reursive de�nition of the set of �llpant words:

� The empty word is a ippant. The words of length 1, I, M and W are ippant.

� If s is a ippant word then so are MsW, WsM and IsI.

� All ippant words are generated by the previous rules.
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(b) If fn is the number of the ippant words of length n, we have the following

formula:

fn =

{

3
n

2 if n is even

3
n+1

2 if n is odd
(4)

Using the eiling funtion we an express the above in a single formula:

fn = 3⌈
n

2
⌉

To prove this we �rst prove the following reursive formula:

fn =















1 if n = 0

3 if n = 1

3fn−2 if n ≥ 2

(5)

This formula true for n = 1 and n = 2 as follows from the basi step of the

reursive de�nition of the set of ippant words.

If n ≥ 2, there are at least 3fn−2 ippant words, sine for eah ippant word of

length n − 2 the reursive step of the de�nition in part a gives three di�erent

ippant words of length n. To see that there annot be more than 3fn−2 ippant

words of length n, notie that if a ippant word of length n starts with M it has

to end with W, if it starts with W it has to end with M and if it starts with I it

has to end with I. So all ippants words of length n ome from a ippant word

of length n − 2 by prepending M and appending W, or by prepending W and

appending M or by prepending and appending I. Thus there are exatly 3fn−2

ippant words of length n.

Using formula (5) and strong indution we an prove formula (4) as follows:

The formula (4) is true for n = 1 and n = 2 as seen by simply substituting. Now

for the indutive step assume that the formula is true for all numbers less than

n and we will prove that it is also true for n. Now aording to formula (5)

fn = 3fn−2

If n is even, by the indutive hypothesis fn−2 = 3
n−2

2 sine n − 2 is also even. So

for n even we have:

fn = 3fn−2

= 3 · 3
n−2

2

= 3
n−2

2
+1

= 3
n

2
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If n is odd then fn−2 = 3
n−2+1

2 sine n − 2 is also odd. Therefore:

fn = 3fn−2

= 3 · 3
n−2+1

2

= 3
n−1

2
+1

= 3
n+1

2

This ompletes the indutive step and the proof.

The following questions refer to the digraphs G1 and G2 shown bellow:

1 2

3 4

G1

1 2

3 4

G2

11. Answer the following questions for i = 1, 2:

(a) Is Gi reexive?

(b) Is Gi irreexive?

() Is Gi symmetri?

(d) Is Gi transitive?

Answer. (a) G1 is not reexive, G2 is.

(b) Neither G1 nor G2 are irreexive.

() Neither G1 nor G2 are symmetri.

(d) Neither graph is transitive. To see this we will work with the matries assoiated

with the digraphs. The matrix assoiated with G1 is:

M1 =











0 1 1 0

1 0 1 0

0 0 0 1

0 1 1 1
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Taking the boolean square of M1 we have

M1 ⊙ M1 =











0 1 1 0

1 0 1 0

0 0 0 1

0 1 1 1











⊙











0 1 1 0

1 0 1 0

0 0 0 1

0 1 1 1











=











1 0 1 1

0 1 1 1

0 1 1 1

1 1 1 1











Sine, for example, the (1, 1) element of M1 ⊙M2 is 1 while the (1, 1) element of

M1 is 0 we onlude that M1 is not transitive.

The matrix assoiated with G1 is:

M2 =











1 1 0 0

0 1 1 0

1 0 1 1

0 1 0 1











Taking the boolean square of M2 we have

M1 ⊙ M1 =











1 1 0 0

0 1 1 0

1 0 1 1

0 1 0 1











⊙











1 1 0 0

0 1 1 0

1 0 1 1

0 1 0 1











=











1 1 1 0

1 1 1 1

1 1 1 1

0 1 1 1











Sine, for example, the (1, 3) element of M2 ⊙M2 is 1 while the (1, 3) element of

M2 is 0 we onlude that M2 is not transitive.

12. Draw the digraph G2 ◦ G1.

Answer. We �rst alulate the matrix assoiated with G2 ◦ G1.

M2 ⊙ M1 =











1 1 0 0

0 1 1 0

1 0 1 1

0 1 0 1











⊙











0 1 1 0

1 0 1 0

0 0 0 1

0 1 1 1











=











1 1 1 0

1 0 1 1

0 1 1 1

1 1 1 1











So we have the following graph:
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1 2

3 4

G2 ◦ G1

13. What is the last digit of 20092009?

Answer. The last digit of 20092009 is 9. To see this we �rst observe that for any natural

number n the last digit of 2009n will be the same as the last digit of 9n, this follows

from the well known algorithm for multipliation. We will prove by indution that

The last digit of 9n is 1 if n is even and 9 if n is odd.

Indeed this is true for n = 0 sine 0 is even and 90 = 1. Assume then that it is true

that the last digit of 9n is 1 or 9 aording to whether n is even or odd. We will prove

that this is true for the last digit of 9n+1 as well.

If n + 1 is odd then n is even and aording to the indutive hypothesis the last digit

of 9n is 1. Now 9n+1 = 9n · 9 and when we use the standard multipliation algorithm

we'll get 9 to be the last digit of 9n+1. Similarly, if n + 1 is odd, then n is even

and therefore the last digit of 9n is 9. So when we use the standard multipliation

algorithm to multiply 9n with 9 we'll get 1 as the last digit.

14. Prove that 7 divides 55552222 + 22225555.

Answer. Sine 5555 leaves remainder 4 when divided by 7 and 2222 leaves remainder

3 when divided by 7, it follows that 55552222 + 22225555 leaves the same remainder as

42222 + 35555 when divided by 7. Now

42222 + 35555 = 42222 + 35555

= 42·1111 + 35·1111

=
(

42
)1111

+
(

35
)1111

= (16)
1111

+ (243)
1111

= (16 + 243)(161110 − 161109243 + · · · − 16 · 2431109 + 2431110)

= 259(161110 − 161109243 + · · · − 16 · 2431109 + 2431110)

= 7 · 37(161110 − 161109243 + · · · − 16 · 2431109 + 2431110)
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Thus 42222 + 35555 is divisible by 7 and therefore so is 55552222 + 22225555.
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