Fourth Quiz for CSI35

Nikos Apostolakis

Directions: This quiz is due Thursday November 13, at 2:00 PM. Please make sure to justify all your answers. No credit will be given for unjustified answers.

1. How many equivalence relations are there on the set $\{1,2,3,4,5\}$?
2. Let $A=\{1,2, \ldots, 20\}$. Draw the Hasse diagram for the poset (A, \mid), where \mid stands for the divisibility relation:

$$
a \mid b \Longleftrightarrow \exists c \in \mathbb{N} \quad b=a c
$$

3. List all 2×2 zero-one matrices. Which of these matrices represent reflexive relations on $\{0,1\}$? Which represent symmetric relations? antisymmetric?
4. Consider the partial order represented by the following Hasse diagram:

(a) Find the maximal elements.
(b) Find the minimal elements.
(c) Is there a largest element?
(d) Is there a least element?
(e) Find all upper bounds of $\{a, b, c\}$.
(f) Find the least upper bound of $\{a, b, c\}$, if it exists.
(g) Find all lower bounds of $\{j, k, g\}$.
(h) Find the greatest lower bound of $\{j, k, g\}$, if it exists.
5. Let (P, \preceq) be a poset that has only one maximal element m. Is m necessarily maximum? If your answer is affirmative then you should prove it, if it is negative then you should provide a counterexample.
6. Extra Credit: Write a program that lists all partitions of $\{1,2,3,4,5\}$ into disjoint sets.
