Second Quiz for CSI35

Nikos Apostolakis

September 19, 2008

Directions: This quiz is due Thursday September 25, at 2:00 PM.

1. Recall that a bit string is a word on the alphabet $\{0,1\}$. Let O be the function that counts the number of zeros in a bit string s.
(a) Give a recursive definition of $O(s)$.
(b) Use structural induction to prove that for two string bits s and t we have:

$$
O(s t)=O(s)+O(t)
$$

where, st stands for the concatenation of the two strings s and t.
2. For a rooted tree T let $n(T)$ and $e(T)$ denote the number of vertices and the number of edges of T respectively. Use structural induction to prove that for all rooted trees T,

$$
n(T)-e(T)=1
$$

3. Let T be a full binary tree. Use structural induction to show that $n(T) \geq 2 h(T)+1$ where $n(T)$ is the number of vertices of T and $h(T)$ is the height of T.
4. Recall the definition of the Fibonacci numbers $\left\{f_{n}\right\}$:

$$
f_{n}= \begin{cases}0 & \text { if } \mathrm{n}=0 \\ 1 & \text { if } \mathrm{n}=1 \\ f_{n-1}+f_{n-2} & \text { otherwise }\end{cases}
$$

Prove that for all positive integers n we have:

$$
f_{n+1} f_{n-1}-f_{n}^{2}=(-1)^{n}
$$

5. Extra Credit: Let $\varphi=\frac{1+\sqrt{5}}{2}, \bar{\varphi}=\frac{1-\sqrt{5}}{2}$ and let f_{n} be the nth Fibonacci number for $n \in \mathbb{N}$.
(a) Prove that $\forall n \in \mathbb{N} \quad \varphi^{n}=f_{n-1}+f_{n} \varphi$ and $\bar{\varphi}^{n}=f_{n-1}+f_{n} \bar{\varphi}$.
(b) Prove that

$$
\forall n \in \mathbb{N} \quad f_{n}=\frac{\varphi^{n}-\bar{\varphi}^{n}}{\sqrt{5}}
$$

