First Quiz for CSI35

Nikos Apostolakis

September 5, 2008

Directions: This quiz is due Thursday September 11, at 2:00 PM.

1. Prove that for all natural numbers $n \geq 1$ we have:

$$
1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

2. Prove that for all $n \in \mathbb{N}, n^{2}+n$ is even.
3. Prove that for all $n \in \mathbb{N}, 6$ divides $n^{3}-n$.
4. Alice and Bob play a game by taking turns removing 1 , 2 or 3 stones from a pile that initially has n stones. The person that removes the last stone wins the game. Alice plays always first.
(a) Prove by induction that if n is a multiple of 4 then Bob has a wining strategy.
(b) Prove that if n is not a multiple of 4 then Alice has a wining strategy.
5. In the Country of Oz they have only 3 -cent and 5 -cent postage stamps. Prove that you can use these stamps to pay for any letter that costs 8 or more cents.
6. Extra Credit: Can you figure out what is wrong in the following "proof"?

Claim. All cars have the same color.
Proof. There is only a finite number of cars in the world, let's say n. I will prove, using mathematical induction, that for any natural number $n \geq 1$, in any collection of n cars all cars have to have the same color.
Base step: For $n=1$ the proposition is obvious.
Inductive step: Assume that the cars in any collections of n cars have the same color. I will prove that the cars in any collection of $n+1$ cars have the same color. Indeed, let $\left\{c_{1}, c_{2}, \ldots, c_{n}, c_{n+1}\right\}$ be a collection of $n+1$ cars. By the inductive hypothesis, the cars $c_{1}, c_{2}, \ldots, c_{n}$ have the same color so I need to show that the car c_{n+1} has the same color as well. But this is true because by the inductive hypothesis the cars $c_{2}, \ldots, c_{n}, c_{n+1}$ have the same color.

